You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3962 lines
178 KiB

/**
* The `crypto` module provides cryptographic functionality that includes a set of
* wrappers for OpenSSL's hash, HMAC, cipher, decipher, sign, and verify functions.
*
* ```js
* const { createHmac } = await import('crypto');
*
* const secret = 'abcdefg';
* const hash = createHmac('sha256', secret)
* .update('I love cupcakes')
* .digest('hex');
* console.log(hash);
* // Prints:
* // c0fa1bc00531bd78ef38c628449c5102aeabd49b5dc3a2a516ea6ea959d6658e
* ```
* @see [source](https://github.com/nodejs/node/blob/v18.0.0/lib/crypto.js)
*/
declare module 'crypto' {
import * as stream from 'node:stream';
import { PeerCertificate } from 'node:tls';
/**
* SPKAC is a Certificate Signing Request mechanism originally implemented by
* Netscape and was specified formally as part of [HTML5's `keygen` element](https://developer.mozilla.org/en-US/docs/Web/HTML/Element/keygen).
*
* `<keygen>` is deprecated since [HTML 5.2](https://www.w3.org/TR/html52/changes.html#features-removed) and new projects
* should not use this element anymore.
*
* The `crypto` module provides the `Certificate` class for working with SPKAC
* data. The most common usage is handling output generated by the HTML5`<keygen>` element. Node.js uses [OpenSSL's SPKAC
* implementation](https://www.openssl.org/docs/man1.1.0/apps/openssl-spkac.html) internally.
* @since v0.11.8
*/
class Certificate {
/**
* ```js
* const { Certificate } = await import('crypto');
* const spkac = getSpkacSomehow();
* const challenge = Certificate.exportChallenge(spkac);
* console.log(challenge.toString('utf8'));
* // Prints: the challenge as a UTF8 string
* ```
* @since v9.0.0
* @param encoding The `encoding` of the `spkac` string.
* @return The challenge component of the `spkac` data structure, which includes a public key and a challenge.
*/
static exportChallenge(spkac: BinaryLike): Buffer;
/**
* ```js
* const { Certificate } = await import('crypto');
* const spkac = getSpkacSomehow();
* const publicKey = Certificate.exportPublicKey(spkac);
* console.log(publicKey);
* // Prints: the public key as <Buffer ...>
* ```
* @since v9.0.0
* @param encoding The `encoding` of the `spkac` string.
* @return The public key component of the `spkac` data structure, which includes a public key and a challenge.
*/
static exportPublicKey(spkac: BinaryLike, encoding?: string): Buffer;
/**
* ```js
* import { Buffer } from 'buffer';
* const { Certificate } = await import('crypto');
*
* const spkac = getSpkacSomehow();
* console.log(Certificate.verifySpkac(Buffer.from(spkac)));
* // Prints: true or false
* ```
* @since v9.0.0
* @param encoding The `encoding` of the `spkac` string.
* @return `true` if the given `spkac` data structure is valid, `false` otherwise.
*/
static verifySpkac(spkac: NodeJS.ArrayBufferView): boolean;
/**
* @deprecated
* @param spkac
* @returns The challenge component of the `spkac` data structure,
* which includes a public key and a challenge.
*/
exportChallenge(spkac: BinaryLike): Buffer;
/**
* @deprecated
* @param spkac
* @param encoding The encoding of the spkac string.
* @returns The public key component of the `spkac` data structure,
* which includes a public key and a challenge.
*/
exportPublicKey(spkac: BinaryLike, encoding?: string): Buffer;
/**
* @deprecated
* @param spkac
* @returns `true` if the given `spkac` data structure is valid,
* `false` otherwise.
*/
verifySpkac(spkac: NodeJS.ArrayBufferView): boolean;
}
namespace constants {
// https://nodejs.org/dist/latest-v10.x/docs/api/crypto.html#crypto_crypto_constants
const OPENSSL_VERSION_NUMBER: number;
/** Applies multiple bug workarounds within OpenSSL. See https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html for detail. */
const SSL_OP_ALL: number;
/** Allows legacy insecure renegotiation between OpenSSL and unpatched clients or servers. See https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html. */
const SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION: number;
/** Attempts to use the server's preferences instead of the client's when selecting a cipher. See https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html. */
const SSL_OP_CIPHER_SERVER_PREFERENCE: number;
/** Instructs OpenSSL to use Cisco's "speshul" version of DTLS_BAD_VER. */
const SSL_OP_CISCO_ANYCONNECT: number;
/** Instructs OpenSSL to turn on cookie exchange. */
const SSL_OP_COOKIE_EXCHANGE: number;
/** Instructs OpenSSL to add server-hello extension from an early version of the cryptopro draft. */
const SSL_OP_CRYPTOPRO_TLSEXT_BUG: number;
/** Instructs OpenSSL to disable a SSL 3.0/TLS 1.0 vulnerability workaround added in OpenSSL 0.9.6d. */
const SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS: number;
/** Instructs OpenSSL to always use the tmp_rsa key when performing RSA operations. */
const SSL_OP_EPHEMERAL_RSA: number;
/** Allows initial connection to servers that do not support RI. */
const SSL_OP_LEGACY_SERVER_CONNECT: number;
const SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER: number;
const SSL_OP_MICROSOFT_SESS_ID_BUG: number;
/** Instructs OpenSSL to disable the workaround for a man-in-the-middle protocol-version vulnerability in the SSL 2.0 server implementation. */
const SSL_OP_MSIE_SSLV2_RSA_PADDING: number;
const SSL_OP_NETSCAPE_CA_DN_BUG: number;
const SSL_OP_NETSCAPE_CHALLENGE_BUG: number;
const SSL_OP_NETSCAPE_DEMO_CIPHER_CHANGE_BUG: number;
const SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG: number;
/** Instructs OpenSSL to disable support for SSL/TLS compression. */
const SSL_OP_NO_COMPRESSION: number;
const SSL_OP_NO_QUERY_MTU: number;
/** Instructs OpenSSL to always start a new session when performing renegotiation. */
const SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION: number;
const SSL_OP_NO_SSLv2: number;
const SSL_OP_NO_SSLv3: number;
const SSL_OP_NO_TICKET: number;
const SSL_OP_NO_TLSv1: number;
const SSL_OP_NO_TLSv1_1: number;
const SSL_OP_NO_TLSv1_2: number;
const SSL_OP_PKCS1_CHECK_1: number;
const SSL_OP_PKCS1_CHECK_2: number;
/** Instructs OpenSSL to always create a new key when using temporary/ephemeral DH parameters. */
const SSL_OP_SINGLE_DH_USE: number;
/** Instructs OpenSSL to always create a new key when using temporary/ephemeral ECDH parameters. */
const SSL_OP_SINGLE_ECDH_USE: number;
const SSL_OP_SSLEAY_080_CLIENT_DH_BUG: number;
const SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG: number;
const SSL_OP_TLS_BLOCK_PADDING_BUG: number;
const SSL_OP_TLS_D5_BUG: number;
/** Instructs OpenSSL to disable version rollback attack detection. */
const SSL_OP_TLS_ROLLBACK_BUG: number;
const ENGINE_METHOD_RSA: number;
const ENGINE_METHOD_DSA: number;
const ENGINE_METHOD_DH: number;
const ENGINE_METHOD_RAND: number;
const ENGINE_METHOD_EC: number;
const ENGINE_METHOD_CIPHERS: number;
const ENGINE_METHOD_DIGESTS: number;
const ENGINE_METHOD_PKEY_METHS: number;
const ENGINE_METHOD_PKEY_ASN1_METHS: number;
const ENGINE_METHOD_ALL: number;
const ENGINE_METHOD_NONE: number;
const DH_CHECK_P_NOT_SAFE_PRIME: number;
const DH_CHECK_P_NOT_PRIME: number;
const DH_UNABLE_TO_CHECK_GENERATOR: number;
const DH_NOT_SUITABLE_GENERATOR: number;
const ALPN_ENABLED: number;
const RSA_PKCS1_PADDING: number;
const RSA_SSLV23_PADDING: number;
const RSA_NO_PADDING: number;
const RSA_PKCS1_OAEP_PADDING: number;
const RSA_X931_PADDING: number;
const RSA_PKCS1_PSS_PADDING: number;
/** Sets the salt length for RSA_PKCS1_PSS_PADDING to the digest size when signing or verifying. */
const RSA_PSS_SALTLEN_DIGEST: number;
/** Sets the salt length for RSA_PKCS1_PSS_PADDING to the maximum permissible value when signing data. */
const RSA_PSS_SALTLEN_MAX_SIGN: number;
/** Causes the salt length for RSA_PKCS1_PSS_PADDING to be determined automatically when verifying a signature. */
const RSA_PSS_SALTLEN_AUTO: number;
const POINT_CONVERSION_COMPRESSED: number;
const POINT_CONVERSION_UNCOMPRESSED: number;
const POINT_CONVERSION_HYBRID: number;
/** Specifies the built-in default cipher list used by Node.js (colon-separated values). */
const defaultCoreCipherList: string;
/** Specifies the active default cipher list used by the current Node.js process (colon-separated values). */
const defaultCipherList: string;
}
interface HashOptions extends stream.TransformOptions {
/**
* For XOF hash functions such as `shake256`, the
* outputLength option can be used to specify the desired output length in bytes.
*/
outputLength?: number | undefined;
}
/** @deprecated since v10.0.0 */
const fips: boolean;
/**
* Creates and returns a `Hash` object that can be used to generate hash digests
* using the given `algorithm`. Optional `options` argument controls stream
* behavior. For XOF hash functions such as `'shake256'`, the `outputLength` option
* can be used to specify the desired output length in bytes.
*
* The `algorithm` is dependent on the available algorithms supported by the
* version of OpenSSL on the platform. Examples are `'sha256'`, `'sha512'`, etc.
* On recent releases of OpenSSL, `openssl list -digest-algorithms` will
* display the available digest algorithms.
*
* Example: generating the sha256 sum of a file
*
* ```js
* import {
* createReadStream
* } from 'fs';
* import { argv } from 'process';
* const {
* createHash
* } = await import('crypto');
*
* const filename = argv[2];
*
* const hash = createHash('sha256');
*
* const input = createReadStream(filename);
* input.on('readable', () => {
* // Only one element is going to be produced by the
* // hash stream.
* const data = input.read();
* if (data)
* hash.update(data);
* else {
* console.log(`${hash.digest('hex')} ${filename}`);
* }
* });
* ```
* @since v0.1.92
* @param options `stream.transform` options
*/
function createHash(algorithm: string, options?: HashOptions): Hash;
/**
* Creates and returns an `Hmac` object that uses the given `algorithm` and `key`.
* Optional `options` argument controls stream behavior.
*
* The `algorithm` is dependent on the available algorithms supported by the
* version of OpenSSL on the platform. Examples are `'sha256'`, `'sha512'`, etc.
* On recent releases of OpenSSL, `openssl list -digest-algorithms` will
* display the available digest algorithms.
*
* The `key` is the HMAC key used to generate the cryptographic HMAC hash. If it is
* a `KeyObject`, its type must be `secret`.
*
* Example: generating the sha256 HMAC of a file
*
* ```js
* import {
* createReadStream
* } from 'fs';
* import { argv } from 'process';
* const {
* createHmac
* } = await import('crypto');
*
* const filename = argv[2];
*
* const hmac = createHmac('sha256', 'a secret');
*
* const input = createReadStream(filename);
* input.on('readable', () => {
* // Only one element is going to be produced by the
* // hash stream.
* const data = input.read();
* if (data)
* hmac.update(data);
* else {
* console.log(`${hmac.digest('hex')} ${filename}`);
* }
* });
* ```
* @since v0.1.94
* @param options `stream.transform` options
*/
function createHmac(algorithm: string, key: BinaryLike | KeyObject, options?: stream.TransformOptions): Hmac;
// https://nodejs.org/api/buffer.html#buffer_buffers_and_character_encodings
type BinaryToTextEncoding = 'base64' | 'base64url' | 'hex' | 'binary';
type CharacterEncoding = 'utf8' | 'utf-8' | 'utf16le' | 'latin1';
type LegacyCharacterEncoding = 'ascii' | 'binary' | 'ucs2' | 'ucs-2';
type Encoding = BinaryToTextEncoding | CharacterEncoding | LegacyCharacterEncoding;
type ECDHKeyFormat = 'compressed' | 'uncompressed' | 'hybrid';
/**
* The `Hash` class is a utility for creating hash digests of data. It can be
* used in one of two ways:
*
* * As a `stream` that is both readable and writable, where data is written
* to produce a computed hash digest on the readable side, or
* * Using the `hash.update()` and `hash.digest()` methods to produce the
* computed hash.
*
* The {@link createHash} method is used to create `Hash` instances. `Hash`objects are not to be created directly using the `new` keyword.
*
* Example: Using `Hash` objects as streams:
*
* ```js
* const {
* createHash
* } = await import('crypto');
*
* const hash = createHash('sha256');
*
* hash.on('readable', () => {
* // Only one element is going to be produced by the
* // hash stream.
* const data = hash.read();
* if (data) {
* console.log(data.toString('hex'));
* // Prints:
* // 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50
* }
* });
*
* hash.write('some data to hash');
* hash.end();
* ```
*
* Example: Using `Hash` and piped streams:
*
* ```js
* import { createReadStream } from 'fs';
* import { stdout } from 'process';
* const { createHash } = await import('crypto');
*
* const hash = createHash('sha256');
*
* const input = createReadStream('test.js');
* input.pipe(hash).setEncoding('hex').pipe(stdout);
* ```
*
* Example: Using the `hash.update()` and `hash.digest()` methods:
*
* ```js
* const {
* createHash
* } = await import('crypto');
*
* const hash = createHash('sha256');
*
* hash.update('some data to hash');
* console.log(hash.digest('hex'));
* // Prints:
* // 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50
* ```
* @since v0.1.92
*/
class Hash extends stream.Transform {
private constructor();
/**
* Creates a new `Hash` object that contains a deep copy of the internal state
* of the current `Hash` object.
*
* The optional `options` argument controls stream behavior. For XOF hash
* functions such as `'shake256'`, the `outputLength` option can be used to
* specify the desired output length in bytes.
*
* An error is thrown when an attempt is made to copy the `Hash` object after
* its `hash.digest()` method has been called.
*
* ```js
* // Calculate a rolling hash.
* const {
* createHash
* } = await import('crypto');
*
* const hash = createHash('sha256');
*
* hash.update('one');
* console.log(hash.copy().digest('hex'));
*
* hash.update('two');
* console.log(hash.copy().digest('hex'));
*
* hash.update('three');
* console.log(hash.copy().digest('hex'));
*
* // Etc.
* ```
* @since v13.1.0
* @param options `stream.transform` options
*/
copy(options?: stream.TransformOptions): Hash;
/**
* Updates the hash content with the given `data`, the encoding of which
* is given in `inputEncoding`.
* If `encoding` is not provided, and the `data` is a string, an
* encoding of `'utf8'` is enforced. If `data` is a `Buffer`, `TypedArray`, or`DataView`, then `inputEncoding` is ignored.
*
* This can be called many times with new data as it is streamed.
* @since v0.1.92
* @param inputEncoding The `encoding` of the `data` string.
*/
update(data: BinaryLike): Hash;
update(data: string, inputEncoding: Encoding): Hash;
/**
* Calculates the digest of all of the data passed to be hashed (using the `hash.update()` method).
* If `encoding` is provided a string will be returned; otherwise
* a `Buffer` is returned.
*
* The `Hash` object can not be used again after `hash.digest()` method has been
* called. Multiple calls will cause an error to be thrown.
* @since v0.1.92
* @param encoding The `encoding` of the return value.
*/
digest(): Buffer;
digest(encoding: BinaryToTextEncoding): string;
}
/**
* The `Hmac` class is a utility for creating cryptographic HMAC digests. It can
* be used in one of two ways:
*
* * As a `stream` that is both readable and writable, where data is written
* to produce a computed HMAC digest on the readable side, or
* * Using the `hmac.update()` and `hmac.digest()` methods to produce the
* computed HMAC digest.
*
* The {@link createHmac} method is used to create `Hmac` instances. `Hmac`objects are not to be created directly using the `new` keyword.
*
* Example: Using `Hmac` objects as streams:
*
* ```js
* const {
* createHmac
* } = await import('crypto');
*
* const hmac = createHmac('sha256', 'a secret');
*
* hmac.on('readable', () => {
* // Only one element is going to be produced by the
* // hash stream.
* const data = hmac.read();
* if (data) {
* console.log(data.toString('hex'));
* // Prints:
* // 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e
* }
* });
*
* hmac.write('some data to hash');
* hmac.end();
* ```
*
* Example: Using `Hmac` and piped streams:
*
* ```js
* import { createReadStream } from 'fs';
* import { stdout } from 'process';
* const {
* createHmac
* } = await import('crypto');
*
* const hmac = createHmac('sha256', 'a secret');
*
* const input = createReadStream('test.js');
* input.pipe(hmac).pipe(stdout);
* ```
*
* Example: Using the `hmac.update()` and `hmac.digest()` methods:
*
* ```js
* const {
* createHmac
* } = await import('crypto');
*
* const hmac = createHmac('sha256', 'a secret');
*
* hmac.update('some data to hash');
* console.log(hmac.digest('hex'));
* // Prints:
* // 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e
* ```
* @since v0.1.94
*/
class Hmac extends stream.Transform {
private constructor();
/**
* Updates the `Hmac` content with the given `data`, the encoding of which
* is given in `inputEncoding`.
* If `encoding` is not provided, and the `data` is a string, an
* encoding of `'utf8'` is enforced. If `data` is a `Buffer`, `TypedArray`, or`DataView`, then `inputEncoding` is ignored.
*
* This can be called many times with new data as it is streamed.
* @since v0.1.94
* @param inputEncoding The `encoding` of the `data` string.
*/
update(data: BinaryLike): Hmac;
update(data: string, inputEncoding: Encoding): Hmac;
/**
* Calculates the HMAC digest of all of the data passed using `hmac.update()`.
* If `encoding` is
* provided a string is returned; otherwise a `Buffer` is returned;
*
* The `Hmac` object can not be used again after `hmac.digest()` has been
* called. Multiple calls to `hmac.digest()` will result in an error being thrown.
* @since v0.1.94
* @param encoding The `encoding` of the return value.
*/
digest(): Buffer;
digest(encoding: BinaryToTextEncoding): string;
}
type KeyObjectType = 'secret' | 'public' | 'private';
interface KeyExportOptions<T extends KeyFormat> {
type: 'pkcs1' | 'spki' | 'pkcs8' | 'sec1';
format: T;
cipher?: string | undefined;
passphrase?: string | Buffer | undefined;
}
interface JwkKeyExportOptions {
format: 'jwk';
}
interface JsonWebKey {
crv?: string | undefined;
d?: string | undefined;
dp?: string | undefined;
dq?: string | undefined;
e?: string | undefined;
k?: string | undefined;
kty?: string | undefined;
n?: string | undefined;
p?: string | undefined;
q?: string | undefined;
qi?: string | undefined;
x?: string | undefined;
y?: string | undefined;
[key: string]: unknown;
}
interface AsymmetricKeyDetails {
/**
* Key size in bits (RSA, DSA).
*/
modulusLength?: number | undefined;
/**
* Public exponent (RSA).
*/
publicExponent?: bigint | undefined;
/**
* Name of the message digest (RSA-PSS).
*/
hashAlgorithm?: string | undefined;
/**
* Name of the message digest used by MGF1 (RSA-PSS).
*/
mgf1HashAlgorithm?: string | undefined;
/**
* Minimal salt length in bytes (RSA-PSS).
*/
saltLength?: number | undefined;
/**
* Size of q in bits (DSA).
*/
divisorLength?: number | undefined;
/**
* Name of the curve (EC).
*/
namedCurve?: string | undefined;
}
/**
* Node.js uses a `KeyObject` class to represent a symmetric or asymmetric key,
* and each kind of key exposes different functions. The {@link createSecretKey}, {@link createPublicKey} and {@link createPrivateKey} methods are used to create `KeyObject`instances. `KeyObject`
* objects are not to be created directly using the `new`keyword.
*
* Most applications should consider using the new `KeyObject` API instead of
* passing keys as strings or `Buffer`s due to improved security features.
*
* `KeyObject` instances can be passed to other threads via `postMessage()`.
* The receiver obtains a cloned `KeyObject`, and the `KeyObject` does not need to
* be listed in the `transferList` argument.
* @since v11.6.0
*/
class KeyObject {
private constructor();
/**
* Example: Converting a `CryptoKey` instance to a `KeyObject`:
*
* ```js
* const { webcrypto, KeyObject } = await import('crypto');
* const { subtle } = webcrypto;
*
* const key = await subtle.generateKey({
* name: 'HMAC',
* hash: 'SHA-256',
* length: 256
* }, true, ['sign', 'verify']);
*
* const keyObject = KeyObject.from(key);
* console.log(keyObject.symmetricKeySize);
* // Prints: 32 (symmetric key size in bytes)
* ```
* @since v15.0.0
*/
static from(key: webcrypto.CryptoKey): KeyObject;
/**
* For asymmetric keys, this property represents the type of the key. Supported key
* types are:
*
* * `'rsa'` (OID 1.2.840.113549.1.1.1)
* * `'rsa-pss'` (OID 1.2.840.113549.1.1.10)
* * `'dsa'` (OID 1.2.840.10040.4.1)
* * `'ec'` (OID 1.2.840.10045.2.1)
* * `'x25519'` (OID 1.3.101.110)
* * `'x448'` (OID 1.3.101.111)
* * `'ed25519'` (OID 1.3.101.112)
* * `'ed448'` (OID 1.3.101.113)
* * `'dh'` (OID 1.2.840.113549.1.3.1)
*
* This property is `undefined` for unrecognized `KeyObject` types and symmetric
* keys.
* @since v11.6.0
*/
asymmetricKeyType?: KeyType | undefined;
/**
* For asymmetric keys, this property represents the size of the embedded key in
* bytes. This property is `undefined` for symmetric keys.
*/
asymmetricKeySize?: number | undefined;
/**
* This property exists only on asymmetric keys. Depending on the type of the key,
* this object contains information about the key. None of the information obtained
* through this property can be used to uniquely identify a key or to compromise
* the security of the key.
*
* For RSA-PSS keys, if the key material contains a `RSASSA-PSS-params` sequence,
* the `hashAlgorithm`, `mgf1HashAlgorithm`, and `saltLength` properties will be
* set.
*
* Other key details might be exposed via this API using additional attributes.
* @since v15.7.0
*/
asymmetricKeyDetails?: AsymmetricKeyDetails | undefined;
/**
* For symmetric keys, the following encoding options can be used:
*
* For public keys, the following encoding options can be used:
*
* For private keys, the following encoding options can be used:
*
* The result type depends on the selected encoding format, when PEM the
* result is a string, when DER it will be a buffer containing the data
* encoded as DER, when [JWK](https://tools.ietf.org/html/rfc7517) it will be an object.
*
* When [JWK](https://tools.ietf.org/html/rfc7517) encoding format was selected, all other encoding options are
* ignored.
*
* PKCS#1, SEC1, and PKCS#8 type keys can be encrypted by using a combination of
* the `cipher` and `format` options. The PKCS#8 `type` can be used with any`format` to encrypt any key algorithm (RSA, EC, or DH) by specifying a`cipher`. PKCS#1 and SEC1 can only be
* encrypted by specifying a `cipher`when the PEM `format` is used. For maximum compatibility, use PKCS#8 for
* encrypted private keys. Since PKCS#8 defines its own
* encryption mechanism, PEM-level encryption is not supported when encrypting
* a PKCS#8 key. See [RFC 5208](https://www.rfc-editor.org/rfc/rfc5208.txt) for PKCS#8 encryption and [RFC 1421](https://www.rfc-editor.org/rfc/rfc1421.txt) for
* PKCS#1 and SEC1 encryption.
* @since v11.6.0
*/
export(options: KeyExportOptions<'pem'>): string | Buffer;
export(options?: KeyExportOptions<'der'>): Buffer;
export(options?: JwkKeyExportOptions): JsonWebKey;
/**
* For secret keys, this property represents the size of the key in bytes. This
* property is `undefined` for asymmetric keys.
* @since v11.6.0
*/
symmetricKeySize?: number | undefined;
/**
* Depending on the type of this `KeyObject`, this property is either`'secret'` for secret (symmetric) keys, `'public'` for public (asymmetric) keys
* or `'private'` for private (asymmetric) keys.
* @since v11.6.0
*/
type: KeyObjectType;
}
type CipherCCMTypes = 'aes-128-ccm' | 'aes-192-ccm' | 'aes-256-ccm' | 'chacha20-poly1305';
type CipherGCMTypes = 'aes-128-gcm' | 'aes-192-gcm' | 'aes-256-gcm';
type CipherOCBTypes = 'aes-128-ocb' | 'aes-192-ocb' | 'aes-256-ocb';
type BinaryLike = string | NodeJS.ArrayBufferView;
type CipherKey = BinaryLike | KeyObject;
interface CipherCCMOptions extends stream.TransformOptions {
authTagLength: number;
}
interface CipherGCMOptions extends stream.TransformOptions {
authTagLength?: number | undefined;
}
interface CipherOCBOptions extends stream.TransformOptions {
authTagLength: number;
}
/**
* Creates and returns a `Cipher` object that uses the given `algorithm` and`password`.
*
* The `options` argument controls stream behavior and is optional except when a
* cipher in CCM or OCB mode (e.g. `'aes-128-ccm'`) is used. In that case, the`authTagLength` option is required and specifies the length of the
* authentication tag in bytes, see `CCM mode`. In GCM mode, the `authTagLength`option is not required but can be used to set the length of the authentication
* tag that will be returned by `getAuthTag()` and defaults to 16 bytes.
* For `chacha20-poly1305`, the `authTagLength` option defaults to 16 bytes.
*
* The `algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On
* recent OpenSSL releases, `openssl list -cipher-algorithms` will
* display the available cipher algorithms.
*
* The `password` is used to derive the cipher key and initialization vector (IV).
* The value must be either a `'latin1'` encoded string, a `Buffer`, a`TypedArray`, or a `DataView`.
*
* The implementation of `crypto.createCipher()` derives keys using the OpenSSL
* function [`EVP_BytesToKey`](https://www.openssl.org/docs/man1.1.0/crypto/EVP_BytesToKey.html) with the digest algorithm set to MD5, one
* iteration, and no salt. The lack of salt allows dictionary attacks as the same
* password always creates the same key. The low iteration count and
* non-cryptographically secure hash algorithm allow passwords to be tested very
* rapidly.
*
* In line with OpenSSL's recommendation to use a more modern algorithm instead of [`EVP_BytesToKey`](https://www.openssl.org/docs/man1.1.0/crypto/EVP_BytesToKey.html) it is recommended that
* developers derive a key and IV on
* their own using {@link scrypt} and to use {@link createCipheriv} to create the `Cipher` object. Users should not use ciphers with counter mode
* (e.g. CTR, GCM, or CCM) in `crypto.createCipher()`. A warning is emitted when
* they are used in order to avoid the risk of IV reuse that causes
* vulnerabilities. For the case when IV is reused in GCM, see [Nonce-Disrespecting Adversaries](https://github.com/nonce-disrespect/nonce-disrespect) for details.
* @since v0.1.94
* @deprecated Since v10.0.0 - Use {@link createCipheriv} instead.
* @param options `stream.transform` options
*/
function createCipher(algorithm: CipherCCMTypes, password: BinaryLike, options: CipherCCMOptions): CipherCCM;
/** @deprecated since v10.0.0 use `createCipheriv()` */
function createCipher(algorithm: CipherGCMTypes, password: BinaryLike, options?: CipherGCMOptions): CipherGCM;
/** @deprecated since v10.0.0 use `createCipheriv()` */
function createCipher(algorithm: string, password: BinaryLike, options?: stream.TransformOptions): Cipher;
/**
* Creates and returns a `Cipher` object, with the given `algorithm`, `key` and
* initialization vector (`iv`).
*
* The `options` argument controls stream behavior and is optional except when a
* cipher in CCM or OCB mode (e.g. `'aes-128-ccm'`) is used. In that case, the`authTagLength` option is required and specifies the length of the
* authentication tag in bytes, see `CCM mode`. In GCM mode, the `authTagLength`option is not required but can be used to set the length of the authentication
* tag that will be returned by `getAuthTag()` and defaults to 16 bytes.
* For `chacha20-poly1305`, the `authTagLength` option defaults to 16 bytes.
*
* The `algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On
* recent OpenSSL releases, `openssl list -cipher-algorithms` will
* display the available cipher algorithms.
*
* The `key` is the raw key used by the `algorithm` and `iv` is an [initialization vector](https://en.wikipedia.org/wiki/Initialization_vector). Both arguments must be `'utf8'` encoded
* strings,`Buffers`, `TypedArray`, or `DataView`s. The `key` may optionally be
* a `KeyObject` of type `secret`. If the cipher does not need
* an initialization vector, `iv` may be `null`.
*
* When passing strings for `key` or `iv`, please consider `caveats when using strings as inputs to cryptographic APIs`.
*
* Initialization vectors should be unpredictable and unique; ideally, they will be
* cryptographically random. They do not have to be secret: IVs are typically just
* added to ciphertext messages unencrypted. It may sound contradictory that
* something has to be unpredictable and unique, but does not have to be secret;
* remember that an attacker must not be able to predict ahead of time what a
* given IV will be.
* @since v0.1.94
* @param options `stream.transform` options
*/
function createCipheriv(algorithm: CipherCCMTypes, key: CipherKey, iv: BinaryLike, options: CipherCCMOptions): CipherCCM;
function createCipheriv(algorithm: CipherOCBTypes, key: CipherKey, iv: BinaryLike, options: CipherOCBOptions): CipherOCB;
function createCipheriv(algorithm: CipherGCMTypes, key: CipherKey, iv: BinaryLike, options?: CipherGCMOptions): CipherGCM;
function createCipheriv(algorithm: string, key: CipherKey, iv: BinaryLike | null, options?: stream.TransformOptions): Cipher;
/**
* Instances of the `Cipher` class are used to encrypt data. The class can be
* used in one of two ways:
*
* * As a `stream` that is both readable and writable, where plain unencrypted
* data is written to produce encrypted data on the readable side, or
* * Using the `cipher.update()` and `cipher.final()` methods to produce
* the encrypted data.
*
* The {@link createCipher} or {@link createCipheriv} methods are
* used to create `Cipher` instances. `Cipher` objects are not to be created
* directly using the `new` keyword.
*
* Example: Using `Cipher` objects as streams:
*
* ```js
* const {
* scrypt,
* randomFill,
* createCipheriv
* } = await import('crypto');
*
* const algorithm = 'aes-192-cbc';
* const password = 'Password used to generate key';
*
* // First, we'll generate the key. The key length is dependent on the algorithm.
* // In this case for aes192, it is 24 bytes (192 bits).
* scrypt(password, 'salt', 24, (err, key) => {
* if (err) throw err;
* // Then, we'll generate a random initialization vector
* randomFill(new Uint8Array(16), (err, iv) => {
* if (err) throw err;
*
* // Once we have the key and iv, we can create and use the cipher...
* const cipher = createCipheriv(algorithm, key, iv);
*
* let encrypted = '';
* cipher.setEncoding('hex');
*
* cipher.on('data', (chunk) => encrypted += chunk);
* cipher.on('end', () => console.log(encrypted));
*
* cipher.write('some clear text data');
* cipher.end();
* });
* });
* ```
*
* Example: Using `Cipher` and piped streams:
*
* ```js
* import {
* createReadStream,
* createWriteStream,
* } from 'fs';
*
* import {
* pipeline
* } from 'stream';
*
* const {
* scrypt,
* randomFill,
* createCipheriv
* } = await import('crypto');
*
* const algorithm = 'aes-192-cbc';
* const password = 'Password used to generate key';
*
* // First, we'll generate the key. The key length is dependent on the algorithm.
* // In this case for aes192, it is 24 bytes (192 bits).
* scrypt(password, 'salt', 24, (err, key) => {
* if (err) throw err;
* // Then, we'll generate a random initialization vector
* randomFill(new Uint8Array(16), (err, iv) => {
* if (err) throw err;
*
* const cipher = createCipheriv(algorithm, key, iv);
*
* const input = createReadStream('test.js');
* const output = createWriteStream('test.enc');
*
* pipeline(input, cipher, output, (err) => {
* if (err) throw err;
* });
* });
* });
* ```
*
* Example: Using the `cipher.update()` and `cipher.final()` methods:
*
* ```js
* const {
* scrypt,
* randomFill,
* createCipheriv
* } = await import('crypto');
*
* const algorithm = 'aes-192-cbc';
* const password = 'Password used to generate key';
*
* // First, we'll generate the key. The key length is dependent on the algorithm.
* // In this case for aes192, it is 24 bytes (192 bits).
* scrypt(password, 'salt', 24, (err, key) => {
* if (err) throw err;
* // Then, we'll generate a random initialization vector
* randomFill(new Uint8Array(16), (err, iv) => {
* if (err) throw err;
*
* const cipher = createCipheriv(algorithm, key, iv);
*
* let encrypted = cipher.update('some clear text data', 'utf8', 'hex');
* encrypted += cipher.final('hex');
* console.log(encrypted);
* });
* });
* ```
* @since v0.1.94
*/
class Cipher extends stream.Transform {
private constructor();
/**
* Updates the cipher with `data`. If the `inputEncoding` argument is given,
* the `data`argument is a string using the specified encoding. If the `inputEncoding`argument is not given, `data` must be a `Buffer`, `TypedArray`, or`DataView`. If `data` is a `Buffer`,
* `TypedArray`, or `DataView`, then`inputEncoding` is ignored.
*
* The `outputEncoding` specifies the output format of the enciphered
* data. If the `outputEncoding`is specified, a string using the specified encoding is returned. If no`outputEncoding` is provided, a `Buffer` is returned.
*
* The `cipher.update()` method can be called multiple times with new data until `cipher.final()` is called. Calling `cipher.update()` after `cipher.final()` will result in an error being
* thrown.
* @since v0.1.94
* @param inputEncoding The `encoding` of the data.
* @param outputEncoding The `encoding` of the return value.
*/
update(data: BinaryLike): Buffer;
update(data: string, inputEncoding: Encoding): Buffer;
update(data: NodeJS.ArrayBufferView, inputEncoding: undefined, outputEncoding: Encoding): string;
update(data: string, inputEncoding: Encoding | undefined, outputEncoding: Encoding): string;
/**
* Once the `cipher.final()` method has been called, the `Cipher` object can no
* longer be used to encrypt data. Attempts to call `cipher.final()` more than
* once will result in an error being thrown.
* @since v0.1.94
* @param outputEncoding The `encoding` of the return value.
* @return Any remaining enciphered contents. If `outputEncoding` is specified, a string is returned. If an `outputEncoding` is not provided, a {@link Buffer} is returned.
*/
final(): Buffer;
final(outputEncoding: BufferEncoding): string;
/**
* When using block encryption algorithms, the `Cipher` class will automatically
* add padding to the input data to the appropriate block size. To disable the
* default padding call `cipher.setAutoPadding(false)`.
*
* When `autoPadding` is `false`, the length of the entire input data must be a
* multiple of the cipher's block size or `cipher.final()` will throw an error.
* Disabling automatic padding is useful for non-standard padding, for instance
* using `0x0` instead of PKCS padding.
*
* The `cipher.setAutoPadding()` method must be called before `cipher.final()`.
* @since v0.7.1
* @param [autoPadding=true]
* @return for method chaining.
*/
setAutoPadding(autoPadding?: boolean): this;
}
interface CipherCCM extends Cipher {
setAAD(
buffer: NodeJS.ArrayBufferView,
options: {
plaintextLength: number;
}
): this;
getAuthTag(): Buffer;
}
interface CipherGCM extends Cipher {
setAAD(
buffer: NodeJS.ArrayBufferView,
options?: {
plaintextLength: number;
}
): this;
getAuthTag(): Buffer;
}
interface CipherOCB extends Cipher {
setAAD(
buffer: NodeJS.ArrayBufferView,
options?: {
plaintextLength: number;
}
): this;
getAuthTag(): Buffer;
}
/**
* Creates and returns a `Decipher` object that uses the given `algorithm` and`password` (key).
*
* The `options` argument controls stream behavior and is optional except when a
* cipher in CCM or OCB mode (e.g. `'aes-128-ccm'`) is used. In that case, the`authTagLength` option is required and specifies the length of the
* authentication tag in bytes, see `CCM mode`.
* For `chacha20-poly1305`, the `authTagLength` option defaults to 16 bytes.
*
* The implementation of `crypto.createDecipher()` derives keys using the OpenSSL
* function [`EVP_BytesToKey`](https://www.openssl.org/docs/man1.1.0/crypto/EVP_BytesToKey.html) with the digest algorithm set to MD5, one
* iteration, and no salt. The lack of salt allows dictionary attacks as the same
* password always creates the same key. The low iteration count and
* non-cryptographically secure hash algorithm allow passwords to be tested very
* rapidly.
*
* In line with OpenSSL's recommendation to use a more modern algorithm instead of [`EVP_BytesToKey`](https://www.openssl.org/docs/man1.1.0/crypto/EVP_BytesToKey.html) it is recommended that
* developers derive a key and IV on
* their own using {@link scrypt} and to use {@link createDecipheriv} to create the `Decipher` object.
* @since v0.1.94
* @deprecated Since v10.0.0 - Use {@link createDecipheriv} instead.
* @param options `stream.transform` options
*/
function createDecipher(algorithm: CipherCCMTypes, password: BinaryLike, options: CipherCCMOptions): DecipherCCM;
/** @deprecated since v10.0.0 use `createDecipheriv()` */
function createDecipher(algorithm: CipherGCMTypes, password: BinaryLike, options?: CipherGCMOptions): DecipherGCM;
/** @deprecated since v10.0.0 use `createDecipheriv()` */
function createDecipher(algorithm: string, password: BinaryLike, options?: stream.TransformOptions): Decipher;
/**
* Creates and returns a `Decipher` object that uses the given `algorithm`, `key`and initialization vector (`iv`).
*
* The `options` argument controls stream behavior and is optional except when a
* cipher in CCM or OCB mode (e.g. `'aes-128-ccm'`) is used. In that case, the`authTagLength` option is required and specifies the length of the
* authentication tag in bytes, see `CCM mode`. In GCM mode, the `authTagLength`option is not required but can be used to restrict accepted authentication tags
* to those with the specified length.
* For `chacha20-poly1305`, the `authTagLength` option defaults to 16 bytes.
*
* The `algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On
* recent OpenSSL releases, `openssl list -cipher-algorithms` will
* display the available cipher algorithms.
*
* The `key` is the raw key used by the `algorithm` and `iv` is an [initialization vector](https://en.wikipedia.org/wiki/Initialization_vector). Both arguments must be `'utf8'` encoded
* strings,`Buffers`, `TypedArray`, or `DataView`s. The `key` may optionally be
* a `KeyObject` of type `secret`. If the cipher does not need
* an initialization vector, `iv` may be `null`.
*
* When passing strings for `key` or `iv`, please consider `caveats when using strings as inputs to cryptographic APIs`.
*
* Initialization vectors should be unpredictable and unique; ideally, they will be
* cryptographically random. They do not have to be secret: IVs are typically just
* added to ciphertext messages unencrypted. It may sound contradictory that
* something has to be unpredictable and unique, but does not have to be secret;
* remember that an attacker must not be able to predict ahead of time what a given
* IV will be.
* @since v0.1.94
* @param options `stream.transform` options
*/
function createDecipheriv(algorithm: CipherCCMTypes, key: CipherKey, iv: BinaryLike, options: CipherCCMOptions): DecipherCCM;
function createDecipheriv(algorithm: CipherOCBTypes, key: CipherKey, iv: BinaryLike, options: CipherOCBOptions): DecipherOCB;
function createDecipheriv(algorithm: CipherGCMTypes, key: CipherKey, iv: BinaryLike, options?: CipherGCMOptions): DecipherGCM;
function createDecipheriv(algorithm: string, key: CipherKey, iv: BinaryLike | null, options?: stream.TransformOptions): Decipher;
/**
* Instances of the `Decipher` class are used to decrypt data. The class can be
* used in one of two ways:
*
* * As a `stream` that is both readable and writable, where plain encrypted
* data is written to produce unencrypted data on the readable side, or
* * Using the `decipher.update()` and `decipher.final()` methods to
* produce the unencrypted data.
*
* The {@link createDecipher} or {@link createDecipheriv} methods are
* used to create `Decipher` instances. `Decipher` objects are not to be created
* directly using the `new` keyword.
*
* Example: Using `Decipher` objects as streams:
*
* ```js
* import { Buffer } from 'buffer';
* const {
* scryptSync,
* createDecipheriv
* } = await import('crypto');
*
* const algorithm = 'aes-192-cbc';
* const password = 'Password used to generate key';
* // Key length is dependent on the algorithm. In this case for aes192, it is
* // 24 bytes (192 bits).
* // Use the async `crypto.scrypt()` instead.
* const key = scryptSync(password, 'salt', 24);
* // The IV is usually passed along with the ciphertext.
* const iv = Buffer.alloc(16, 0); // Initialization vector.
*
* const decipher = createDecipheriv(algorithm, key, iv);
*
* let decrypted = '';
* decipher.on('readable', () => {
* while (null !== (chunk = decipher.read())) {
* decrypted += chunk.toString('utf8');
* }
* });
* decipher.on('end', () => {
* console.log(decrypted);
* // Prints: some clear text data
* });
*
* // Encrypted with same algorithm, key and iv.
* const encrypted =
* 'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa';
* decipher.write(encrypted, 'hex');
* decipher.end();
* ```
*
* Example: Using `Decipher` and piped streams:
*
* ```js
* import {
* createReadStream,
* createWriteStream,
* } from 'fs';
* import { Buffer } from 'buffer';
* const {
* scryptSync,
* createDecipheriv
* } = await import('crypto');
*
* const algorithm = 'aes-192-cbc';
* const password = 'Password used to generate key';
* // Use the async `crypto.scrypt()` instead.
* const key = scryptSync(password, 'salt', 24);
* // The IV is usually passed along with the ciphertext.
* const iv = Buffer.alloc(16, 0); // Initialization vector.
*
* const decipher = createDecipheriv(algorithm, key, iv);
*
* const input = createReadStream('test.enc');
* const output = createWriteStream('test.js');
*
* input.pipe(decipher).pipe(output);
* ```
*
* Example: Using the `decipher.update()` and `decipher.final()` methods:
*
* ```js
* import { Buffer } from 'buffer';
* const {
* scryptSync,
* createDecipheriv
* } = await import('crypto');
*
* const algorithm = 'aes-192-cbc';
* const password = 'Password used to generate key';
* // Use the async `crypto.scrypt()` instead.
* const key = scryptSync(password, 'salt', 24);
* // The IV is usually passed along with the ciphertext.
* const iv = Buffer.alloc(16, 0); // Initialization vector.
*
* const decipher = createDecipheriv(algorithm, key, iv);
*
* // Encrypted using same algorithm, key and iv.
* const encrypted =
* 'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa';
* let decrypted = decipher.update(encrypted, 'hex', 'utf8');
* decrypted += decipher.final('utf8');
* console.log(decrypted);
* // Prints: some clear text data
* ```
* @since v0.1.94
*/
class Decipher extends stream.Transform {
private constructor();
/**
* Updates the decipher with `data`. If the `inputEncoding` argument is given,
* the `data`argument is a string using the specified encoding. If the `inputEncoding`argument is not given, `data` must be a `Buffer`. If `data` is a `Buffer` then `inputEncoding` is
* ignored.
*
* The `outputEncoding` specifies the output format of the enciphered
* data. If the `outputEncoding`is specified, a string using the specified encoding is returned. If no`outputEncoding` is provided, a `Buffer` is returned.
*
* The `decipher.update()` method can be called multiple times with new data until `decipher.final()` is called. Calling `decipher.update()` after `decipher.final()` will result in an error
* being thrown.
* @since v0.1.94
* @param inputEncoding The `encoding` of the `data` string.
* @param outputEncoding The `encoding` of the return value.
*/
update(data: NodeJS.ArrayBufferView): Buffer;
update(data: string, inputEncoding: Encoding): Buffer;
update(data: NodeJS.ArrayBufferView, inputEncoding: undefined, outputEncoding: Encoding): string;
update(data: string, inputEncoding: Encoding | undefined, outputEncoding: Encoding): string;
/**
* Once the `decipher.final()` method has been called, the `Decipher` object can
* no longer be used to decrypt data. Attempts to call `decipher.final()` more
* than once will result in an error being thrown.
* @since v0.1.94
* @param outputEncoding The `encoding` of the return value.
* @return Any remaining deciphered contents. If `outputEncoding` is specified, a string is returned. If an `outputEncoding` is not provided, a {@link Buffer} is returned.
*/
final(): Buffer;
final(outputEncoding: BufferEncoding): string;
/**
* When data has been encrypted without standard block padding, calling`decipher.setAutoPadding(false)` will disable automatic padding to prevent `decipher.final()` from checking for and
* removing padding.
*
* Turning auto padding off will only work if the input data's length is a
* multiple of the ciphers block size.
*
* The `decipher.setAutoPadding()` method must be called before `decipher.final()`.
* @since v0.7.1
* @param [autoPadding=true]
* @return for method chaining.
*/
setAutoPadding(auto_padding?: boolean): this;
}
interface DecipherCCM extends Decipher {
setAuthTag(buffer: NodeJS.ArrayBufferView): this;
setAAD(
buffer: NodeJS.ArrayBufferView,
options: {
plaintextLength: number;
}
): this;
}
interface DecipherGCM extends Decipher {
setAuthTag(buffer: NodeJS.ArrayBufferView): this;
setAAD(
buffer: NodeJS.ArrayBufferView,
options?: {
plaintextLength: number;
}
): this;
}
interface DecipherOCB extends Decipher {
setAuthTag(buffer: NodeJS.ArrayBufferView): this;
setAAD(
buffer: NodeJS.ArrayBufferView,
options?: {
plaintextLength: number;
}
): this;
}
interface PrivateKeyInput {
key: string | Buffer;
format?: KeyFormat | undefined;
type?: 'pkcs1' | 'pkcs8' | 'sec1' | undefined;
passphrase?: string | Buffer | undefined;
}
interface PublicKeyInput {
key: string | Buffer;
format?: KeyFormat | undefined;
type?: 'pkcs1' | 'spki' | undefined;
}
/**
* Asynchronously generates a new random secret key of the given `length`. The`type` will determine which validations will be performed on the `length`.
*
* ```js
* const {
* generateKey
* } = await import('crypto');
*
* generateKey('hmac', { length: 64 }, (err, key) => {
* if (err) throw err;
* console.log(key.export().toString('hex')); // 46e..........620
* });
* ```
* @since v15.0.0
* @param type The intended use of the generated secret key. Currently accepted values are `'hmac'` and `'aes'`.
*/
function generateKey(
type: 'hmac' | 'aes',
options: {
length: number;
},
callback: (err: Error | null, key: KeyObject) => void
): void;
/**
* Synchronously generates a new random secret key of the given `length`. The`type` will determine which validations will be performed on the `length`.
*
* ```js
* const {
* generateKeySync
* } = await import('crypto');
*
* const key = generateKeySync('hmac', { length: 64 });
* console.log(key.export().toString('hex')); // e89..........41e
* ```
* @since v15.0.0
* @param type The intended use of the generated secret key. Currently accepted values are `'hmac'` and `'aes'`.
*/
function generateKeySync(
type: 'hmac' | 'aes',
options: {
length: number;
}
): KeyObject;
interface JsonWebKeyInput {
key: JsonWebKey;
format: 'jwk';
}
/**
* Creates and returns a new key object containing a private key. If `key` is a
* string or `Buffer`, `format` is assumed to be `'pem'`; otherwise, `key`must be an object with the properties described above.
*
* If the private key is encrypted, a `passphrase` must be specified. The length
* of the passphrase is limited to 1024 bytes.
* @since v11.6.0
*/
function createPrivateKey(key: PrivateKeyInput | string | Buffer | JsonWebKeyInput): KeyObject;
/**
* Creates and returns a new key object containing a public key. If `key` is a
* string or `Buffer`, `format` is assumed to be `'pem'`; if `key` is a `KeyObject`with type `'private'`, the public key is derived from the given private key;
* otherwise, `key` must be an object with the properties described above.
*
* If the format is `'pem'`, the `'key'` may also be an X.509 certificate.
*
* Because public keys can be derived from private keys, a private key may be
* passed instead of a public key. In that case, this function behaves as if {@link createPrivateKey} had been called, except that the type of the
* returned `KeyObject` will be `'public'` and that the private key cannot be
* extracted from the returned `KeyObject`. Similarly, if a `KeyObject` with type`'private'` is given, a new `KeyObject` with type `'public'` will be returned
* and it will be impossible to extract the private key from the returned object.
* @since v11.6.0
*/
function createPublicKey(key: PublicKeyInput | string | Buffer | KeyObject | JsonWebKeyInput): KeyObject;
/**
* Creates and returns a new key object containing a secret key for symmetric
* encryption or `Hmac`.
* @since v11.6.0
* @param encoding The string encoding when `key` is a string.
*/
function createSecretKey(key: NodeJS.ArrayBufferView): KeyObject;
function createSecretKey(key: string, encoding: BufferEncoding): KeyObject;
/**
* Creates and returns a `Sign` object that uses the given `algorithm`. Use {@link getHashes} to obtain the names of the available digest algorithms.
* Optional `options` argument controls the `stream.Writable` behavior.
*
* In some cases, a `Sign` instance can be created using the name of a signature
* algorithm, such as `'RSA-SHA256'`, instead of a digest algorithm. This will use
* the corresponding digest algorithm. This does not work for all signature
* algorithms, such as `'ecdsa-with-SHA256'`, so it is best to always use digest
* algorithm names.
* @since v0.1.92
* @param options `stream.Writable` options
*/
function createSign(algorithm: string, options?: stream.WritableOptions): Sign;
type DSAEncoding = 'der' | 'ieee-p1363';
interface SigningOptions {
/**
* @See crypto.constants.RSA_PKCS1_PADDING
*/
padding?: number | undefined;
saltLength?: number | undefined;
dsaEncoding?: DSAEncoding | undefined;
}
interface SignPrivateKeyInput extends PrivateKeyInput, SigningOptions {}
interface SignKeyObjectInput extends SigningOptions {
key: KeyObject;
}
interface VerifyPublicKeyInput extends PublicKeyInput, SigningOptions {}
interface VerifyKeyObjectInput extends SigningOptions {
key: KeyObject;
}
type KeyLike = string | Buffer | KeyObject;
/**
* The `Sign` class is a utility for generating signatures. It can be used in one
* of two ways:
*
* * As a writable `stream`, where data to be signed is written and the `sign.sign()` method is used to generate and return the signature, or
* * Using the `sign.update()` and `sign.sign()` methods to produce the
* signature.
*
* The {@link createSign} method is used to create `Sign` instances. The
* argument is the string name of the hash function to use. `Sign` objects are not
* to be created directly using the `new` keyword.
*
* Example: Using `Sign` and `Verify` objects as streams:
*
* ```js
* const {
* generateKeyPairSync,
* createSign,
* createVerify
* } = await import('crypto');
*
* const { privateKey, publicKey } = generateKeyPairSync('ec', {
* namedCurve: 'sect239k1'
* });
*
* const sign = createSign('SHA256');
* sign.write('some data to sign');
* sign.end();
* const signature = sign.sign(privateKey, 'hex');
*
* const verify = createVerify('SHA256');
* verify.write('some data to sign');
* verify.end();
* console.log(verify.verify(publicKey, signature, 'hex'));
* // Prints: true
* ```
*
* Example: Using the `sign.update()` and `verify.update()` methods:
*
* ```js
* const {
* generateKeyPairSync,
* createSign,
* createVerify
* } = await import('crypto');
*
* const { privateKey, publicKey } = generateKeyPairSync('rsa', {
* modulusLength: 2048,
* });
*
* const sign = createSign('SHA256');
* sign.update('some data to sign');
* sign.end();
* const signature = sign.sign(privateKey);
*
* const verify = createVerify('SHA256');
* verify.update('some data to sign');
* verify.end();
* console.log(verify.verify(publicKey, signature));
* // Prints: true
* ```
* @since v0.1.92
*/
class Sign extends stream.Writable {
private constructor();
/**
* Updates the `Sign` content with the given `data`, the encoding of which
* is given in `inputEncoding`.
* If `encoding` is not provided, and the `data` is a string, an
* encoding of `'utf8'` is enforced. If `data` is a `Buffer`, `TypedArray`, or`DataView`, then `inputEncoding` is ignored.
*
* This can be called many times with new data as it is streamed.
* @since v0.1.92
* @param inputEncoding The `encoding` of the `data` string.
*/
update(data: BinaryLike): this;
update(data: string, inputEncoding: Encoding): this;
/**
* Calculates the signature on all the data passed through using either `sign.update()` or `sign.write()`.
*
* If `privateKey` is not a `KeyObject`, this function behaves as if`privateKey` had been passed to {@link createPrivateKey}. If it is an
* object, the following additional properties can be passed:
*
* If `outputEncoding` is provided a string is returned; otherwise a `Buffer` is returned.
*
* The `Sign` object can not be again used after `sign.sign()` method has been
* called. Multiple calls to `sign.sign()` will result in an error being thrown.
* @since v0.1.92
*/
sign(privateKey: KeyLike | SignKeyObjectInput | SignPrivateKeyInput): Buffer;
sign(privateKey: KeyLike | SignKeyObjectInput | SignPrivateKeyInput, outputFormat: BinaryToTextEncoding): string;
}
/**
* Creates and returns a `Verify` object that uses the given algorithm.
* Use {@link getHashes} to obtain an array of names of the available
* signing algorithms. Optional `options` argument controls the`stream.Writable` behavior.
*
* In some cases, a `Verify` instance can be created using the name of a signature
* algorithm, such as `'RSA-SHA256'`, instead of a digest algorithm. This will use
* the corresponding digest algorithm. This does not work for all signature
* algorithms, such as `'ecdsa-with-SHA256'`, so it is best to always use digest
* algorithm names.
* @since v0.1.92
* @param options `stream.Writable` options
*/
function createVerify(algorithm: string, options?: stream.WritableOptions): Verify;
/**
* The `Verify` class is a utility for verifying signatures. It can be used in one
* of two ways:
*
* * As a writable `stream` where written data is used to validate against the
* supplied signature, or
* * Using the `verify.update()` and `verify.verify()` methods to verify
* the signature.
*
* The {@link createVerify} method is used to create `Verify` instances.`Verify` objects are not to be created directly using the `new` keyword.
*
* See `Sign` for examples.
* @since v0.1.92
*/
class Verify extends stream.Writable {
private constructor();
/**
* Updates the `Verify` content with the given `data`, the encoding of which
* is given in `inputEncoding`.
* If `inputEncoding` is not provided, and the `data` is a string, an
* encoding of `'utf8'` is enforced. If `data` is a `Buffer`, `TypedArray`, or`DataView`, then `inputEncoding` is ignored.
*
* This can be called many times with new data as it is streamed.
* @since v0.1.92
* @param inputEncoding The `encoding` of the `data` string.
*/
update(data: BinaryLike): Verify;
update(data: string, inputEncoding: Encoding): Verify;
/**
* Verifies the provided data using the given `object` and `signature`.
*
* If `object` is not a `KeyObject`, this function behaves as if`object` had been passed to {@link createPublicKey}. If it is an
* object, the following additional properties can be passed:
*
* The `signature` argument is the previously calculated signature for the data, in
* the `signatureEncoding`.
* If a `signatureEncoding` is specified, the `signature` is expected to be a
* string; otherwise `signature` is expected to be a `Buffer`,`TypedArray`, or `DataView`.
*
* The `verify` object can not be used again after `verify.verify()` has been
* called. Multiple calls to `verify.verify()` will result in an error being
* thrown.
*
* Because public keys can be derived from private keys, a private key may
* be passed instead of a public key.
* @since v0.1.92
*/
verify(object: KeyLike | VerifyKeyObjectInput | VerifyPublicKeyInput, signature: NodeJS.ArrayBufferView): boolean;
verify(object: KeyLike | VerifyKeyObjectInput | VerifyPublicKeyInput, signature: string, signature_format?: BinaryToTextEncoding): boolean;
}
/**
* Creates a `DiffieHellman` key exchange object using the supplied `prime` and an
* optional specific `generator`.
*
* The `generator` argument can be a number, string, or `Buffer`. If`generator` is not specified, the value `2` is used.
*
* If `primeEncoding` is specified, `prime` is expected to be a string; otherwise
* a `Buffer`, `TypedArray`, or `DataView` is expected.
*
* If `generatorEncoding` is specified, `generator` is expected to be a string;
* otherwise a number, `Buffer`, `TypedArray`, or `DataView` is expected.
* @since v0.11.12
* @param primeEncoding The `encoding` of the `prime` string.
* @param [generator=2]
* @param generatorEncoding The `encoding` of the `generator` string.
*/
function createDiffieHellman(primeLength: number, generator?: number | NodeJS.ArrayBufferView): DiffieHellman;
function createDiffieHellman(prime: NodeJS.ArrayBufferView): DiffieHellman;
function createDiffieHellman(prime: string, primeEncoding: BinaryToTextEncoding): DiffieHellman;
function createDiffieHellman(prime: string, primeEncoding: BinaryToTextEncoding, generator: number | NodeJS.ArrayBufferView): DiffieHellman;
function createDiffieHellman(prime: string, primeEncoding: BinaryToTextEncoding, generator: string, generatorEncoding: BinaryToTextEncoding): DiffieHellman;
/**
* The `DiffieHellman` class is a utility for creating Diffie-Hellman key
* exchanges.
*
* Instances of the `DiffieHellman` class can be created using the {@link createDiffieHellman} function.
*
* ```js
* import assert from 'assert';
*
* const {
* createDiffieHellman
* } = await import('crypto');
*
* // Generate Alice's keys...
* const alice = createDiffieHellman(2048);
* const aliceKey = alice.generateKeys();
*
* // Generate Bob's keys...
* const bob = createDiffieHellman(alice.getPrime(), alice.getGenerator());
* const bobKey = bob.generateKeys();
*
* // Exchange and generate the secret...
* const aliceSecret = alice.computeSecret(bobKey);
* const bobSecret = bob.computeSecret(aliceKey);
*
* // OK
* assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));
* ```
* @since v0.5.0
*/
class DiffieHellman {
private constructor();
/**
* Generates private and public Diffie-Hellman key values, and returns
* the public key in the specified `encoding`. This key should be
* transferred to the other party.
* If `encoding` is provided a string is returned; otherwise a `Buffer` is returned.
* @since v0.5.0
* @param encoding The `encoding` of the return value.
*/
generateKeys(): Buffer;
generateKeys(encoding: BinaryToTextEncoding): string;
/**
* Computes the shared secret using `otherPublicKey` as the other
* party's public key and returns the computed shared secret. The supplied
* key is interpreted using the specified `inputEncoding`, and secret is
* encoded using specified `outputEncoding`.
* If the `inputEncoding` is not
* provided, `otherPublicKey` is expected to be a `Buffer`,`TypedArray`, or `DataView`.
*
* If `outputEncoding` is given a string is returned; otherwise, a `Buffer` is returned.
* @since v0.5.0
* @param inputEncoding The `encoding` of an `otherPublicKey` string.
* @param outputEncoding The `encoding` of the return value.
*/
computeSecret(otherPublicKey: NodeJS.ArrayBufferView, inputEncoding?: null, outputEncoding?: null): Buffer;
computeSecret(otherPublicKey: string, inputEncoding: BinaryToTextEncoding, outputEncoding?: null): Buffer;
computeSecret(otherPublicKey: NodeJS.ArrayBufferView, inputEncoding: null, outputEncoding: BinaryToTextEncoding): string;
computeSecret(otherPublicKey: string, inputEncoding: BinaryToTextEncoding, outputEncoding: BinaryToTextEncoding): string;
/**
* Returns the Diffie-Hellman prime in the specified `encoding`.
* If `encoding` is provided a string is
* returned; otherwise a `Buffer` is returned.
* @since v0.5.0
* @param encoding The `encoding` of the return value.
*/
getPrime(): Buffer;
getPrime(encoding: BinaryToTextEncoding): string;
/**
* Returns the Diffie-Hellman generator in the specified `encoding`.
* If `encoding` is provided a string is
* returned; otherwise a `Buffer` is returned.
* @since v0.5.0
* @param encoding The `encoding` of the return value.
*/
getGenerator(): Buffer;
getGenerator(encoding: BinaryToTextEncoding): string;
/**
* Returns the Diffie-Hellman public key in the specified `encoding`.
* If `encoding` is provided a
* string is returned; otherwise a `Buffer` is returned.
* @since v0.5.0
* @param encoding The `encoding` of the return value.
*/
getPublicKey(): Buffer;
getPublicKey(encoding: BinaryToTextEncoding): string;
/**
* Returns the Diffie-Hellman private key in the specified `encoding`.
* If `encoding` is provided a
* string is returned; otherwise a `Buffer` is returned.
* @since v0.5.0
* @param encoding The `encoding` of the return value.
*/
getPrivateKey(): Buffer;
getPrivateKey(encoding: BinaryToTextEncoding): string;
/**
* Sets the Diffie-Hellman public key. If the `encoding` argument is provided,`publicKey` is expected
* to be a string. If no `encoding` is provided, `publicKey` is expected
* to be a `Buffer`, `TypedArray`, or `DataView`.
* @since v0.5.0
* @param encoding The `encoding` of the `publicKey` string.
*/
setPublicKey(publicKey: NodeJS.ArrayBufferView): void;
setPublicKey(publicKey: string, encoding: BufferEncoding): void;
/**
* Sets the Diffie-Hellman private key. If the `encoding` argument is provided,`privateKey` is expected
* to be a string. If no `encoding` is provided, `privateKey` is expected
* to be a `Buffer`, `TypedArray`, or `DataView`.
* @since v0.5.0
* @param encoding The `encoding` of the `privateKey` string.
*/
setPrivateKey(privateKey: NodeJS.ArrayBufferView): void;
setPrivateKey(privateKey: string, encoding: BufferEncoding): void;
/**
* A bit field containing any warnings and/or errors resulting from a check
* performed during initialization of the `DiffieHellman` object.
*
* The following values are valid for this property (as defined in `constants`module):
*
* * `DH_CHECK_P_NOT_SAFE_PRIME`
* * `DH_CHECK_P_NOT_PRIME`
* * `DH_UNABLE_TO_CHECK_GENERATOR`
* * `DH_NOT_SUITABLE_GENERATOR`
* @since v0.11.12
*/
verifyError: number;
}
/**
* The `DiffieHellmanGroup` class takes a well-known modp group as its argument.
* It works the same as `DiffieHellman`, except that it does not allow changing its keys after creation.
* In other words, it does not implement `setPublicKey()` or `setPrivateKey()` methods.
*
* ```js
* const { createDiffieHellmanGroup } = await import('node:crypto');
* const dh = createDiffieHellmanGroup('modp1');
* ```
* The name (e.g. `'modp1'`) is taken from [RFC 2412](https://www.rfc-editor.org/rfc/rfc2412.txt) (modp1 and 2) and [RFC 3526](https://www.rfc-editor.org/rfc/rfc3526.txt):
* ```bash
* $ perl -ne 'print "$1\n" if /"(modp\d+)"/' src/node_crypto_groups.h
* modp1 # 768 bits
* modp2 # 1024 bits
* modp5 # 1536 bits
* modp14 # 2048 bits
* modp15 # etc.
* modp16
* modp17
* modp18
* ```
* @since v0.7.5
*/
const DiffieHellmanGroup: DiffieHellmanGroupConstructor;
interface DiffieHellmanGroupConstructor {
new(name: string): DiffieHellmanGroup;
(name: string): DiffieHellmanGroup;
readonly prototype: DiffieHellmanGroup;
}
type DiffieHellmanGroup = Omit<DiffieHellman, 'setPublicKey' | 'setPrivateKey'>;
/**
* Creates a predefined `DiffieHellmanGroup` key exchange object. The
* supported groups are: `'modp1'`, `'modp2'`, `'modp5'` (defined in [RFC 2412](https://www.rfc-editor.org/rfc/rfc2412.txt), but see `Caveats`) and `'modp14'`, `'modp15'`,`'modp16'`, `'modp17'`,
* `'modp18'` (defined in [RFC 3526](https://www.rfc-editor.org/rfc/rfc3526.txt)). The
* returned object mimics the interface of objects created by {@link createDiffieHellman}, but will not allow changing
* the keys (with `diffieHellman.setPublicKey()`, for example). The
* advantage of using this method is that the parties do not have to
* generate nor exchange a group modulus beforehand, saving both processor
* and communication time.
*
* Example (obtaining a shared secret):
*
* ```js
* const {
* getDiffieHellman
* } = await import('crypto');
* const alice = getDiffieHellman('modp14');
* const bob = getDiffieHellman('modp14');
*
* alice.generateKeys();
* bob.generateKeys();
*
* const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex');
* const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex');
*
* // aliceSecret and bobSecret should be the same
* console.log(aliceSecret === bobSecret);
* ```
* @since v0.7.5
*/
function getDiffieHellman(groupName: string): DiffieHellmanGroup;
/**
* An alias for {@link getDiffieHellman}
* @since v0.9.3
*/
function createDiffieHellmanGroup(name: string): DiffieHellmanGroup;
/**
* Provides an asynchronous Password-Based Key Derivation Function 2 (PBKDF2)
* implementation. A selected HMAC digest algorithm specified by `digest` is
* applied to derive a key of the requested byte length (`keylen`) from the`password`, `salt` and `iterations`.
*
* The supplied `callback` function is called with two arguments: `err` and`derivedKey`. If an error occurs while deriving the key, `err` will be set;
* otherwise `err` will be `null`. By default, the successfully generated`derivedKey` will be passed to the callback as a `Buffer`. An error will be
* thrown if any of the input arguments specify invalid values or types.
*
* If `digest` is `null`, `'sha1'` will be used. This behavior is deprecated,
* please specify a `digest` explicitly.
*
* The `iterations` argument must be a number set as high as possible. The
* higher the number of iterations, the more secure the derived key will be,
* but will take a longer amount of time to complete.
*
* The `salt` should be as unique as possible. It is recommended that a salt is
* random and at least 16 bytes long. See [NIST SP 800-132](https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf) for details.
*
* When passing strings for `password` or `salt`, please consider `caveats when using strings as inputs to cryptographic APIs`.
*
* ```js
* const {
* pbkdf2
* } = await import('crypto');
*
* pbkdf2('secret', 'salt', 100000, 64, 'sha512', (err, derivedKey) => {
* if (err) throw err;
* console.log(derivedKey.toString('hex')); // '3745e48...08d59ae'
* });
* ```
*
* The `crypto.DEFAULT_ENCODING` property can be used to change the way the`derivedKey` is passed to the callback. This property, however, has been
* deprecated and use should be avoided.
*
* ```js
* import crypto from 'crypto';
* crypto.DEFAULT_ENCODING = 'hex';
* crypto.pbkdf2('secret', 'salt', 100000, 512, 'sha512', (err, derivedKey) => {
* if (err) throw err;
* console.log(derivedKey); // '3745e48...aa39b34'
* });
* ```
*
* An array of supported digest functions can be retrieved using {@link getHashes}.
*
* This API uses libuv's threadpool, which can have surprising and
* negative performance implications for some applications; see the `UV_THREADPOOL_SIZE` documentation for more information.
* @since v0.5.5
*/
function pbkdf2(password: BinaryLike, salt: BinaryLike, iterations: number, keylen: number, digest: string, callback: (err: Error | null, derivedKey: Buffer) => void): void;
/**
* Provides a synchronous Password-Based Key Derivation Function 2 (PBKDF2)
* implementation. A selected HMAC digest algorithm specified by `digest` is
* applied to derive a key of the requested byte length (`keylen`) from the`password`, `salt` and `iterations`.
*
* If an error occurs an `Error` will be thrown, otherwise the derived key will be
* returned as a `Buffer`.
*
* If `digest` is `null`, `'sha1'` will be used. This behavior is deprecated,
* please specify a `digest` explicitly.
*
* The `iterations` argument must be a number set as high as possible. The
* higher the number of iterations, the more secure the derived key will be,
* but will take a longer amount of time to complete.
*
* The `salt` should be as unique as possible. It is recommended that a salt is
* random and at least 16 bytes long. See [NIST SP 800-132](https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf) for details.
*
* When passing strings for `password` or `salt`, please consider `caveats when using strings as inputs to cryptographic APIs`.
*
* ```js
* const {
* pbkdf2Sync
* } = await import('crypto');
*
* const key = pbkdf2Sync('secret', 'salt', 100000, 64, 'sha512');
* console.log(key.toString('hex')); // '3745e48...08d59ae'
* ```
*
* The `crypto.DEFAULT_ENCODING` property may be used to change the way the`derivedKey` is returned. This property, however, is deprecated and use
* should be avoided.
*
* ```js
* import crypto from 'crypto';
* crypto.DEFAULT_ENCODING = 'hex';
* const key = crypto.pbkdf2Sync('secret', 'salt', 100000, 512, 'sha512');
* console.log(key); // '3745e48...aa39b34'
* ```
*
* An array of supported digest functions can be retrieved using {@link getHashes}.
* @since v0.9.3
*/
function pbkdf2Sync(password: BinaryLike, salt: BinaryLike, iterations: number, keylen: number, digest: string): Buffer;
/**
* Generates cryptographically strong pseudorandom data. The `size` argument
* is a number indicating the number of bytes to generate.
*
* If a `callback` function is provided, the bytes are generated asynchronously
* and the `callback` function is invoked with two arguments: `err` and `buf`.
* If an error occurs, `err` will be an `Error` object; otherwise it is `null`. The`buf` argument is a `Buffer` containing the generated bytes.
*
* ```js
* // Asynchronous
* const {
* randomBytes
* } = await import('crypto');
*
* randomBytes(256, (err, buf) => {
* if (err) throw err;
* console.log(`${buf.length} bytes of random data: ${buf.toString('hex')}`);
* });
* ```
*
* If the `callback` function is not provided, the random bytes are generated
* synchronously and returned as a `Buffer`. An error will be thrown if
* there is a problem generating the bytes.
*
* ```js
* // Synchronous
* const {
* randomBytes
* } = await import('crypto');
*
* const buf = randomBytes(256);
* console.log(
* `${buf.length} bytes of random data: ${buf.toString('hex')}`);
* ```
*
* The `crypto.randomBytes()` method will not complete until there is
* sufficient entropy available.
* This should normally never take longer than a few milliseconds. The only time
* when generating the random bytes may conceivably block for a longer period of
* time is right after boot, when the whole system is still low on entropy.
*
* This API uses libuv's threadpool, which can have surprising and
* negative performance implications for some applications; see the `UV_THREADPOOL_SIZE` documentation for more information.
*
* The asynchronous version of `crypto.randomBytes()` is carried out in a single
* threadpool request. To minimize threadpool task length variation, partition
* large `randomBytes` requests when doing so as part of fulfilling a client
* request.
* @since v0.5.8
* @param size The number of bytes to generate. The `size` must not be larger than `2**31 - 1`.
* @return if the `callback` function is not provided.
*/
function randomBytes(size: number): Buffer;
function randomBytes(size: number, callback: (err: Error | null, buf: Buffer) => void): void;
function pseudoRandomBytes(size: number): Buffer;
function pseudoRandomBytes(size: number, callback: (err: Error | null, buf: Buffer) => void): void;
/**
* Return a random integer `n` such that `min <= n < max`. This
* implementation avoids [modulo bias](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#Modulo_bias).
*
* The range (`max - min`) must be less than 248. `min` and `max` must
* be [safe integers](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isSafeInteger).
*
* If the `callback` function is not provided, the random integer is
* generated synchronously.
*
* ```js
* // Asynchronous
* const {
* randomInt
* } = await import('crypto');
*
* randomInt(3, (err, n) => {
* if (err) throw err;
* console.log(`Random number chosen from (0, 1, 2): ${n}`);
* });
* ```
*
* ```js
* // Synchronous
* const {
* randomInt
* } = await import('crypto');
*
* const n = randomInt(3);
* console.log(`Random number chosen from (0, 1, 2): ${n}`);
* ```
*
* ```js
* // With `min` argument
* const {
* randomInt
* } = await import('crypto');
*
* const n = randomInt(1, 7);
* console.log(`The dice rolled: ${n}`);
* ```
* @since v14.10.0, v12.19.0
* @param [min=0] Start of random range (inclusive).
* @param max End of random range (exclusive).
* @param callback `function(err, n) {}`.
*/
function randomInt(max: number): number;
function randomInt(min: number, max: number): number;
function randomInt(max: number, callback: (err: Error | null, value: number) => void): void;
function randomInt(min: number, max: number, callback: (err: Error | null, value: number) => void): void;
/**
* Synchronous version of {@link randomFill}.
*
* ```js
* import { Buffer } from 'buffer';
* const { randomFillSync } = await import('crypto');
*
* const buf = Buffer.alloc(10);
* console.log(randomFillSync(buf).toString('hex'));
*
* randomFillSync(buf, 5);
* console.log(buf.toString('hex'));
*
* // The above is equivalent to the following:
* randomFillSync(buf, 5, 5);
* console.log(buf.toString('hex'));
* ```
*
* Any `ArrayBuffer`, `TypedArray` or `DataView` instance may be passed as`buffer`.
*
* ```js
* import { Buffer } from 'buffer';
* const { randomFillSync } = await import('crypto');
*
* const a = new Uint32Array(10);
* console.log(Buffer.from(randomFillSync(a).buffer,
* a.byteOffset, a.byteLength).toString('hex'));
*
* const b = new DataView(new ArrayBuffer(10));
* console.log(Buffer.from(randomFillSync(b).buffer,
* b.byteOffset, b.byteLength).toString('hex'));
*
* const c = new ArrayBuffer(10);
* console.log(Buffer.from(randomFillSync(c)).toString('hex'));
* ```
* @since v7.10.0, v6.13.0
* @param buffer Must be supplied. The size of the provided `buffer` must not be larger than `2**31 - 1`.
* @param [offset=0]
* @param [size=buffer.length - offset]
* @return The object passed as `buffer` argument.
*/
function randomFillSync<T extends NodeJS.ArrayBufferView>(buffer: T, offset?: number, size?: number): T;
/**
* This function is similar to {@link randomBytes} but requires the first
* argument to be a `Buffer` that will be filled. It also
* requires that a callback is passed in.
*
* If the `callback` function is not provided, an error will be thrown.
*
* ```js
* import { Buffer } from 'buffer';
* const { randomFill } = await import('crypto');
*
* const buf = Buffer.alloc(10);
* randomFill(buf, (err, buf) => {
* if (err) throw err;
* console.log(buf.toString('hex'));
* });
*
* randomFill(buf, 5, (err, buf) => {
* if (err) throw err;
* console.log(buf.toString('hex'));
* });
*
* // The above is equivalent to the following:
* randomFill(buf, 5, 5, (err, buf) => {
* if (err) throw err;
* console.log(buf.toString('hex'));
* });
* ```
*
* Any `ArrayBuffer`, `TypedArray`, or `DataView` instance may be passed as`buffer`.
*
* While this includes instances of `Float32Array` and `Float64Array`, this
* function should not be used to generate random floating-point numbers. The
* result may contain `+Infinity`, `-Infinity`, and `NaN`, and even if the array
* contains finite numbers only, they are not drawn from a uniform random
* distribution and have no meaningful lower or upper bounds.
*
* ```js
* import { Buffer } from 'buffer';
* const { randomFill } = await import('crypto');
*
* const a = new Uint32Array(10);
* randomFill(a, (err, buf) => {
* if (err) throw err;
* console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength)
* .toString('hex'));
* });
*
* const b = new DataView(new ArrayBuffer(10));
* randomFill(b, (err, buf) => {
* if (err) throw err;
* console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength)
* .toString('hex'));
* });
*
* const c = new ArrayBuffer(10);
* randomFill(c, (err, buf) => {
* if (err) throw err;
* console.log(Buffer.from(buf).toString('hex'));
* });
* ```
*
* This API uses libuv's threadpool, which can have surprising and
* negative performance implications for some applications; see the `UV_THREADPOOL_SIZE` documentation for more information.
*
* The asynchronous version of `crypto.randomFill()` is carried out in a single
* threadpool request. To minimize threadpool task length variation, partition
* large `randomFill` requests when doing so as part of fulfilling a client
* request.
* @since v7.10.0, v6.13.0
* @param buffer Must be supplied. The size of the provided `buffer` must not be larger than `2**31 - 1`.
* @param [offset=0]
* @param [size=buffer.length - offset]
* @param callback `function(err, buf) {}`.
*/
function randomFill<T extends NodeJS.ArrayBufferView>(buffer: T, callback: (err: Error | null, buf: T) => void): void;
function randomFill<T extends NodeJS.ArrayBufferView>(buffer: T, offset: number, callback: (err: Error | null, buf: T) => void): void;
function randomFill<T extends NodeJS.ArrayBufferView>(buffer: T, offset: number, size: number, callback: (err: Error | null, buf: T) => void): void;
interface ScryptOptions {
cost?: number | undefined;
blockSize?: number | undefined;
parallelization?: number | undefined;
N?: number | undefined;
r?: number | undefined;
p?: number | undefined;
maxmem?: number | undefined;
}
/**
* Provides an asynchronous [scrypt](https://en.wikipedia.org/wiki/Scrypt) implementation. Scrypt is a password-based
* key derivation function that is designed to be expensive computationally and
* memory-wise in order to make brute-force attacks unrewarding.
*
* The `salt` should be as unique as possible. It is recommended that a salt is
* random and at least 16 bytes long. See [NIST SP 800-132](https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf) for details.
*
* When passing strings for `password` or `salt`, please consider `caveats when using strings as inputs to cryptographic APIs`.
*
* The `callback` function is called with two arguments: `err` and `derivedKey`.`err` is an exception object when key derivation fails, otherwise `err` is`null`. `derivedKey` is passed to the
* callback as a `Buffer`.
*
* An exception is thrown when any of the input arguments specify invalid values
* or types.
*
* ```js
* const {
* scrypt
* } = await import('crypto');
*
* // Using the factory defaults.
* scrypt('password', 'salt', 64, (err, derivedKey) => {
* if (err) throw err;
* console.log(derivedKey.toString('hex')); // '3745e48...08d59ae'
* });
* // Using a custom N parameter. Must be a power of two.
* scrypt('password', 'salt', 64, { N: 1024 }, (err, derivedKey) => {
* if (err) throw err;
* console.log(derivedKey.toString('hex')); // '3745e48...aa39b34'
* });
* ```
* @since v10.5.0
*/
function scrypt(password: BinaryLike, salt: BinaryLike, keylen: number, callback: (err: Error | null, derivedKey: Buffer) => void): void;
function scrypt(password: BinaryLike, salt: BinaryLike, keylen: number, options: ScryptOptions, callback: (err: Error | null, derivedKey: Buffer) => void): void;
/**
* Provides a synchronous [scrypt](https://en.wikipedia.org/wiki/Scrypt) implementation. Scrypt is a password-based
* key derivation function that is designed to be expensive computationally and
* memory-wise in order to make brute-force attacks unrewarding.
*
* The `salt` should be as unique as possible. It is recommended that a salt is
* random and at least 16 bytes long. See [NIST SP 800-132](https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf) for details.
*
* When passing strings for `password` or `salt`, please consider `caveats when using strings as inputs to cryptographic APIs`.
*
* An exception is thrown when key derivation fails, otherwise the derived key is
* returned as a `Buffer`.
*
* An exception is thrown when any of the input arguments specify invalid values
* or types.
*
* ```js
* const {
* scryptSync
* } = await import('crypto');
* // Using the factory defaults.
*
* const key1 = scryptSync('password', 'salt', 64);
* console.log(key1.toString('hex')); // '3745e48...08d59ae'
* // Using a custom N parameter. Must be a power of two.
* const key2 = scryptSync('password', 'salt', 64, { N: 1024 });
* console.log(key2.toString('hex')); // '3745e48...aa39b34'
* ```
* @since v10.5.0
*/
function scryptSync(password: BinaryLike, salt: BinaryLike, keylen: number, options?: ScryptOptions): Buffer;
interface RsaPublicKey {
key: KeyLike;
padding?: number | undefined;
}
interface RsaPrivateKey {
key: KeyLike;
passphrase?: string | undefined;
/**
* @default 'sha1'
*/
oaepHash?: string | undefined;
oaepLabel?: NodeJS.TypedArray | undefined;
padding?: number | undefined;
}
/**
* Encrypts the content of `buffer` with `key` and returns a new `Buffer` with encrypted content. The returned data can be decrypted using
* the corresponding private key, for example using {@link privateDecrypt}.
*
* If `key` is not a `KeyObject`, this function behaves as if`key` had been passed to {@link createPublicKey}. If it is an
* object, the `padding` property can be passed. Otherwise, this function uses`RSA_PKCS1_OAEP_PADDING`.
*
* Because RSA public keys can be derived from private keys, a private key may
* be passed instead of a public key.
* @since v0.11.14
*/
function publicEncrypt(key: RsaPublicKey | RsaPrivateKey | KeyLike, buffer: NodeJS.ArrayBufferView): Buffer;
/**
* Decrypts `buffer` with `key`.`buffer` was previously encrypted using
* the corresponding private key, for example using {@link privateEncrypt}.
*
* If `key` is not a `KeyObject`, this function behaves as if`key` had been passed to {@link createPublicKey}. If it is an
* object, the `padding` property can be passed. Otherwise, this function uses`RSA_PKCS1_PADDING`.
*
* Because RSA public keys can be derived from private keys, a private key may
* be passed instead of a public key.
* @since v1.1.0
*/
function publicDecrypt(key: RsaPublicKey | RsaPrivateKey | KeyLike, buffer: NodeJS.ArrayBufferView): Buffer;
/**
* Decrypts `buffer` with `privateKey`. `buffer` was previously encrypted using
* the corresponding public key, for example using {@link publicEncrypt}.
*
* If `privateKey` is not a `KeyObject`, this function behaves as if`privateKey` had been passed to {@link createPrivateKey}. If it is an
* object, the `padding` property can be passed. Otherwise, this function uses`RSA_PKCS1_OAEP_PADDING`.
* @since v0.11.14
*/
function privateDecrypt(privateKey: RsaPrivateKey | KeyLike, buffer: NodeJS.ArrayBufferView): Buffer;
/**
* Encrypts `buffer` with `privateKey`. The returned data can be decrypted using
* the corresponding public key, for example using {@link publicDecrypt}.
*
* If `privateKey` is not a `KeyObject`, this function behaves as if`privateKey` had been passed to {@link createPrivateKey}. If it is an
* object, the `padding` property can be passed. Otherwise, this function uses`RSA_PKCS1_PADDING`.
* @since v1.1.0
*/
function privateEncrypt(privateKey: RsaPrivateKey | KeyLike, buffer: NodeJS.ArrayBufferView): Buffer;
/**
* ```js
* const {
* getCiphers
* } = await import('crypto');
*
* console.log(getCiphers()); // ['aes-128-cbc', 'aes-128-ccm', ...]
* ```
* @since v0.9.3
* @return An array with the names of the supported cipher algorithms.
*/
function getCiphers(): string[];
/**
* ```js
* const {
* getCurves
* } = await import('crypto');
*
* console.log(getCurves()); // ['Oakley-EC2N-3', 'Oakley-EC2N-4', ...]
* ```
* @since v2.3.0
* @return An array with the names of the supported elliptic curves.
*/
function getCurves(): string[];
/**
* @since v10.0.0
* @return `1` if and only if a FIPS compliant crypto provider is currently in use, `0` otherwise. A future semver-major release may change the return type of this API to a {boolean}.
*/
function getFips(): 1 | 0;
/**
* Enables the FIPS compliant crypto provider in a FIPS-enabled Node.js build. Throws an error if FIPS mode is not available.
* @since v10.0.0
* @param bool `true` to enable FIPS mode.
*/
function setFips(bool: boolean): void;
/**
* ```js
* const {
* getHashes
* } = await import('crypto');
*
* console.log(getHashes()); // ['DSA', 'DSA-SHA', 'DSA-SHA1', ...]
* ```
* @since v0.9.3
* @return An array of the names of the supported hash algorithms, such as `'RSA-SHA256'`. Hash algorithms are also called "digest" algorithms.
*/
function getHashes(): string[];
/**
* The `ECDH` class is a utility for creating Elliptic Curve Diffie-Hellman (ECDH)
* key exchanges.
*
* Instances of the `ECDH` class can be created using the {@link createECDH} function.
*
* ```js
* import assert from 'assert';
*
* const {
* createECDH
* } = await import('crypto');
*
* // Generate Alice's keys...
* const alice = createECDH('secp521r1');
* const aliceKey = alice.generateKeys();
*
* // Generate Bob's keys...
* const bob = createECDH('secp521r1');
* const bobKey = bob.generateKeys();
*
* // Exchange and generate the secret...
* const aliceSecret = alice.computeSecret(bobKey);
* const bobSecret = bob.computeSecret(aliceKey);
*
* assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));
* // OK
* ```
* @since v0.11.14
*/
class ECDH {
private constructor();
/**
* Converts the EC Diffie-Hellman public key specified by `key` and `curve` to the
* format specified by `format`. The `format` argument specifies point encoding
* and can be `'compressed'`, `'uncompressed'` or `'hybrid'`. The supplied key is
* interpreted using the specified `inputEncoding`, and the returned key is encoded
* using the specified `outputEncoding`.
*
* Use {@link getCurves} to obtain a list of available curve names.
* On recent OpenSSL releases, `openssl ecparam -list_curves` will also display
* the name and description of each available elliptic curve.
*
* If `format` is not specified the point will be returned in `'uncompressed'`format.
*
* If the `inputEncoding` is not provided, `key` is expected to be a `Buffer`,`TypedArray`, or `DataView`.
*
* Example (uncompressing a key):
*
* ```js
* const {
* createECDH,
* ECDH
* } = await import('crypto');
*
* const ecdh = createECDH('secp256k1');
* ecdh.generateKeys();
*
* const compressedKey = ecdh.getPublicKey('hex', 'compressed');
*
* const uncompressedKey = ECDH.convertKey(compressedKey,
* 'secp256k1',
* 'hex',
* 'hex',
* 'uncompressed');
*
* // The converted key and the uncompressed public key should be the same
* console.log(uncompressedKey === ecdh.getPublicKey('hex'));
* ```
* @since v10.0.0
* @param inputEncoding The `encoding` of the `key` string.
* @param outputEncoding The `encoding` of the return value.
* @param [format='uncompressed']
*/
static convertKey(
key: BinaryLike,
curve: string,
inputEncoding?: BinaryToTextEncoding,
outputEncoding?: 'latin1' | 'hex' | 'base64' | 'base64url',
format?: 'uncompressed' | 'compressed' | 'hybrid'
): Buffer | string;
/**
* Generates private and public EC Diffie-Hellman key values, and returns
* the public key in the specified `format` and `encoding`. This key should be
* transferred to the other party.
*
* The `format` argument specifies point encoding and can be `'compressed'` or`'uncompressed'`. If `format` is not specified, the point will be returned in`'uncompressed'` format.
*
* If `encoding` is provided a string is returned; otherwise a `Buffer` is returned.
* @since v0.11.14
* @param encoding The `encoding` of the return value.
* @param [format='uncompressed']
*/
generateKeys(): Buffer;
generateKeys(encoding: BinaryToTextEncoding, format?: ECDHKeyFormat): string;
/**
* Computes the shared secret using `otherPublicKey` as the other
* party's public key and returns the computed shared secret. The supplied
* key is interpreted using specified `inputEncoding`, and the returned secret
* is encoded using the specified `outputEncoding`.
* If the `inputEncoding` is not
* provided, `otherPublicKey` is expected to be a `Buffer`, `TypedArray`, or`DataView`.
*
* If `outputEncoding` is given a string will be returned; otherwise a `Buffer` is returned.
*
* `ecdh.computeSecret` will throw an`ERR_CRYPTO_ECDH_INVALID_PUBLIC_KEY` error when `otherPublicKey`lies outside of the elliptic curve. Since `otherPublicKey` is
* usually supplied from a remote user over an insecure network,
* be sure to handle this exception accordingly.
* @since v0.11.14
* @param inputEncoding The `encoding` of the `otherPublicKey` string.
* @param outputEncoding The `encoding` of the return value.
*/
computeSecret(otherPublicKey: NodeJS.ArrayBufferView): Buffer;
computeSecret(otherPublicKey: string, inputEncoding: BinaryToTextEncoding): Buffer;
computeSecret(otherPublicKey: NodeJS.ArrayBufferView, outputEncoding: BinaryToTextEncoding): string;
computeSecret(otherPublicKey: string, inputEncoding: BinaryToTextEncoding, outputEncoding: BinaryToTextEncoding): string;
/**
* If `encoding` is specified, a string is returned; otherwise a `Buffer` is
* returned.
* @since v0.11.14
* @param encoding The `encoding` of the return value.
* @return The EC Diffie-Hellman in the specified `encoding`.
*/
getPrivateKey(): Buffer;
getPrivateKey(encoding: BinaryToTextEncoding): string;
/**
* The `format` argument specifies point encoding and can be `'compressed'` or`'uncompressed'`. If `format` is not specified the point will be returned in`'uncompressed'` format.
*
* If `encoding` is specified, a string is returned; otherwise a `Buffer` is
* returned.
* @since v0.11.14
* @param [encoding] The `encoding` of the return value.
* @param [format='uncompressed']
* @return The EC Diffie-Hellman public key in the specified `encoding` and `format`.
*/
getPublicKey(encoding?: null, format?: ECDHKeyFormat): Buffer;
getPublicKey(encoding: BinaryToTextEncoding, format?: ECDHKeyFormat): string;
/**
* Sets the EC Diffie-Hellman private key.
* If `encoding` is provided, `privateKey` is expected
* to be a string; otherwise `privateKey` is expected to be a `Buffer`,`TypedArray`, or `DataView`.
*
* If `privateKey` is not valid for the curve specified when the `ECDH` object was
* created, an error is thrown. Upon setting the private key, the associated
* public point (key) is also generated and set in the `ECDH` object.
* @since v0.11.14
* @param encoding The `encoding` of the `privateKey` string.
*/
setPrivateKey(privateKey: NodeJS.ArrayBufferView): void;
setPrivateKey(privateKey: string, encoding: BinaryToTextEncoding): void;
}
/**
* Creates an Elliptic Curve Diffie-Hellman (`ECDH`) key exchange object using a
* predefined curve specified by the `curveName` string. Use {@link getCurves} to obtain a list of available curve names. On recent
* OpenSSL releases, `openssl ecparam -list_curves` will also display the name
* and description of each available elliptic curve.
* @since v0.11.14
*/
function createECDH(curveName: string): ECDH;
/**
* This function is based on a constant-time algorithm.
* Returns true if `a` is equal to `b`, without leaking timing information that
* would allow an attacker to guess one of the values. This is suitable for
* comparing HMAC digests or secret values like authentication cookies or [capability urls](https://www.w3.org/TR/capability-urls/).
*
* `a` and `b` must both be `Buffer`s, `TypedArray`s, or `DataView`s, and they
* must have the same byte length. An error is thrown if `a` and `b` have
* different byte lengths.
*
* If at least one of `a` and `b` is a `TypedArray` with more than one byte per
* entry, such as `Uint16Array`, the result will be computed using the platform
* byte order.
*
* Use of `crypto.timingSafeEqual` does not guarantee that the _surrounding_ code
* is timing-safe. Care should be taken to ensure that the surrounding code does
* not introduce timing vulnerabilities.
* @since v6.6.0
*/
function timingSafeEqual(a: NodeJS.ArrayBufferView, b: NodeJS.ArrayBufferView): boolean;
/** @deprecated since v10.0.0 */
const DEFAULT_ENCODING: BufferEncoding;
type KeyType = 'rsa' | 'rsa-pss' | 'dsa' | 'ec' | 'ed25519' | 'ed448' | 'x25519' | 'x448';
type KeyFormat = 'pem' | 'der';
interface BasePrivateKeyEncodingOptions<T extends KeyFormat> {
format: T;
cipher?: string | undefined;
passphrase?: string | undefined;
}
interface KeyPairKeyObjectResult {
publicKey: KeyObject;
privateKey: KeyObject;
}
interface ED25519KeyPairKeyObjectOptions {}
interface ED448KeyPairKeyObjectOptions {}
interface X25519KeyPairKeyObjectOptions {}
interface X448KeyPairKeyObjectOptions {}
interface ECKeyPairKeyObjectOptions {
/**
* Name of the curve to use
*/
namedCurve: string;
}
interface RSAKeyPairKeyObjectOptions {
/**
* Key size in bits
*/
modulusLength: number;
/**
* Public exponent
* @default 0x10001
*/
publicExponent?: number | undefined;
}
interface RSAPSSKeyPairKeyObjectOptions {
/**
* Key size in bits
*/
modulusLength: number;
/**
* Public exponent
* @default 0x10001
*/
publicExponent?: number | undefined;
/**
* Name of the message digest
*/
hashAlgorithm?: string;
/**
* Name of the message digest used by MGF1
*/
mgf1HashAlgorithm?: string;
/**
* Minimal salt length in bytes
*/
saltLength?: string;
}
interface DSAKeyPairKeyObjectOptions {
/**
* Key size in bits
*/
modulusLength: number;
/**
* Size of q in bits
*/
divisorLength: number;
}
interface RSAKeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
/**
* Key size in bits
*/
modulusLength: number;
/**
* Public exponent
* @default 0x10001
*/
publicExponent?: number | undefined;
publicKeyEncoding: {
type: 'pkcs1' | 'spki';
format: PubF;
};
privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
type: 'pkcs1' | 'pkcs8';
};
}
interface RSAPSSKeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
/**
* Key size in bits
*/
modulusLength: number;
/**
* Public exponent
* @default 0x10001
*/
publicExponent?: number | undefined;
/**
* Name of the message digest
*/
hashAlgorithm?: string;
/**
* Name of the message digest used by MGF1
*/
mgf1HashAlgorithm?: string;
/**
* Minimal salt length in bytes
*/
saltLength?: string;
publicKeyEncoding: {
type: 'spki';
format: PubF;
};
privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
type: 'pkcs8';
};
}
interface DSAKeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
/**
* Key size in bits
*/
modulusLength: number;
/**
* Size of q in bits
*/
divisorLength: number;
publicKeyEncoding: {
type: 'spki';
format: PubF;
};
privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
type: 'pkcs8';
};
}
interface ECKeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
/**
* Name of the curve to use.
*/
namedCurve: string;
publicKeyEncoding: {
type: 'pkcs1' | 'spki';
format: PubF;
};
privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
type: 'sec1' | 'pkcs8';
};
}
interface ED25519KeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
publicKeyEncoding: {
type: 'spki';
format: PubF;
};
privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
type: 'pkcs8';
};
}
interface ED448KeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
publicKeyEncoding: {
type: 'spki';
format: PubF;
};
privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
type: 'pkcs8';
};
}
interface X25519KeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
publicKeyEncoding: {
type: 'spki';
format: PubF;
};
privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
type: 'pkcs8';
};
}
interface X448KeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
publicKeyEncoding: {
type: 'spki';
format: PubF;
};
privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
type: 'pkcs8';
};
}
interface KeyPairSyncResult<T1 extends string | Buffer, T2 extends string | Buffer> {
publicKey: T1;
privateKey: T2;
}
/**
* Generates a new asymmetric key pair of the given `type`. RSA, RSA-PSS, DSA, EC,
* Ed25519, Ed448, X25519, X448, and DH are currently supported.
*
* If a `publicKeyEncoding` or `privateKeyEncoding` was specified, this function
* behaves as if `keyObject.export()` had been called on its result. Otherwise,
* the respective part of the key is returned as a `KeyObject`.
*
* When encoding public keys, it is recommended to use `'spki'`. When encoding
* private keys, it is recommended to use `'pkcs8'` with a strong passphrase,
* and to keep the passphrase confidential.
*
* ```js
* const {
* generateKeyPairSync
* } = await import('crypto');
*
* const {
* publicKey,
* privateKey,
* } = generateKeyPairSync('rsa', {
* modulusLength: 4096,
* publicKeyEncoding: {
* type: 'spki',
* format: 'pem'
* },
* privateKeyEncoding: {
* type: 'pkcs8',
* format: 'pem',
* cipher: 'aes-256-cbc',
* passphrase: 'top secret'
* }
* });
* ```
*
* The return value `{ publicKey, privateKey }` represents the generated key pair.
* When PEM encoding was selected, the respective key will be a string, otherwise
* it will be a buffer containing the data encoded as DER.
* @since v10.12.0
* @param type Must be `'rsa'`, `'rsa-pss'`, `'dsa'`, `'ec'`, `'ed25519'`, `'ed448'`, `'x25519'`, `'x448'`, or `'dh'`.
*/
function generateKeyPairSync(type: 'rsa', options: RSAKeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
function generateKeyPairSync(type: 'rsa', options: RSAKeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
function generateKeyPairSync(type: 'rsa', options: RSAKeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
function generateKeyPairSync(type: 'rsa', options: RSAKeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
function generateKeyPairSync(type: 'rsa', options: RSAKeyPairKeyObjectOptions): KeyPairKeyObjectResult;
function generateKeyPairSync(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
function generateKeyPairSync(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
function generateKeyPairSync(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
function generateKeyPairSync(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
function generateKeyPairSync(type: 'rsa-pss', options: RSAPSSKeyPairKeyObjectOptions): KeyPairKeyObjectResult;
function generateKeyPairSync(type: 'dsa', options: DSAKeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
function generateKeyPairSync(type: 'dsa', options: DSAKeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
function generateKeyPairSync(type: 'dsa', options: DSAKeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
function generateKeyPairSync(type: 'dsa', options: DSAKeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
function generateKeyPairSync(type: 'dsa', options: DSAKeyPairKeyObjectOptions): KeyPairKeyObjectResult;
function generateKeyPairSync(type: 'ec', options: ECKeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
function generateKeyPairSync(type: 'ec', options: ECKeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
function generateKeyPairSync(type: 'ec', options: ECKeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
function generateKeyPairSync(type: 'ec', options: ECKeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
function generateKeyPairSync(type: 'ec', options: ECKeyPairKeyObjectOptions): KeyPairKeyObjectResult;
function generateKeyPairSync(type: 'ed25519', options: ED25519KeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
function generateKeyPairSync(type: 'ed25519', options: ED25519KeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
function generateKeyPairSync(type: 'ed25519', options: ED25519KeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
function generateKeyPairSync(type: 'ed25519', options: ED25519KeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
function generateKeyPairSync(type: 'ed25519', options?: ED25519KeyPairKeyObjectOptions): KeyPairKeyObjectResult;
function generateKeyPairSync(type: 'ed448', options: ED448KeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
function generateKeyPairSync(type: 'ed448', options: ED448KeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
function generateKeyPairSync(type: 'ed448', options: ED448KeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
function generateKeyPairSync(type: 'ed448', options: ED448KeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
function generateKeyPairSync(type: 'ed448', options?: ED448KeyPairKeyObjectOptions): KeyPairKeyObjectResult;
function generateKeyPairSync(type: 'x25519', options: X25519KeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
function generateKeyPairSync(type: 'x25519', options: X25519KeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
function generateKeyPairSync(type: 'x25519', options: X25519KeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
function generateKeyPairSync(type: 'x25519', options: X25519KeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
function generateKeyPairSync(type: 'x25519', options?: X25519KeyPairKeyObjectOptions): KeyPairKeyObjectResult;
function generateKeyPairSync(type: 'x448', options: X448KeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
function generateKeyPairSync(type: 'x448', options: X448KeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
function generateKeyPairSync(type: 'x448', options: X448KeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
function generateKeyPairSync(type: 'x448', options: X448KeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
function generateKeyPairSync(type: 'x448', options?: X448KeyPairKeyObjectOptions): KeyPairKeyObjectResult;
/**
* Generates a new asymmetric key pair of the given `type`. RSA, RSA-PSS, DSA, EC,
* Ed25519, Ed448, X25519, X448, and DH are currently supported.
*
* If a `publicKeyEncoding` or `privateKeyEncoding` was specified, this function
* behaves as if `keyObject.export()` had been called on its result. Otherwise,
* the respective part of the key is returned as a `KeyObject`.
*
* It is recommended to encode public keys as `'spki'` and private keys as`'pkcs8'` with encryption for long-term storage:
*
* ```js
* const {
* generateKeyPair
* } = await import('crypto');
*
* generateKeyPair('rsa', {
* modulusLength: 4096,
* publicKeyEncoding: {
* type: 'spki',
* format: 'pem'
* },
* privateKeyEncoding: {
* type: 'pkcs8',
* format: 'pem',
* cipher: 'aes-256-cbc',
* passphrase: 'top secret'
* }
* }, (err, publicKey, privateKey) => {
* // Handle errors and use the generated key pair.
* });
* ```
*
* On completion, `callback` will be called with `err` set to `undefined` and`publicKey` / `privateKey` representing the generated key pair.
*
* If this method is invoked as its `util.promisify()` ed version, it returns
* a `Promise` for an `Object` with `publicKey` and `privateKey` properties.
* @since v10.12.0
* @param type Must be `'rsa'`, `'rsa-pss'`, `'dsa'`, `'ec'`, `'ed25519'`, `'ed448'`, `'x25519'`, `'x448'`, or `'dh'`.
*/
function generateKeyPair(type: 'rsa', options: RSAKeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
function generateKeyPair(type: 'rsa', options: RSAKeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
function generateKeyPair(type: 'rsa', options: RSAKeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
function generateKeyPair(type: 'rsa', options: RSAKeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
function generateKeyPair(type: 'rsa', options: RSAKeyPairKeyObjectOptions, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
function generateKeyPair(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
function generateKeyPair(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
function generateKeyPair(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
function generateKeyPair(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
function generateKeyPair(type: 'rsa-pss', options: RSAPSSKeyPairKeyObjectOptions, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
function generateKeyPair(type: 'dsa', options: DSAKeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
function generateKeyPair(type: 'dsa', options: DSAKeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
function generateKeyPair(type: 'dsa', options: DSAKeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
function generateKeyPair(type: 'dsa', options: DSAKeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
function generateKeyPair(type: 'dsa', options: DSAKeyPairKeyObjectOptions, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
function generateKeyPair(type: 'ec', options: ECKeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
function generateKeyPair(type: 'ec', options: ECKeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
function generateKeyPair(type: 'ec', options: ECKeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
function generateKeyPair(type: 'ec', options: ECKeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
function generateKeyPair(type: 'ec', options: ECKeyPairKeyObjectOptions, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
function generateKeyPair(type: 'ed25519', options: ED25519KeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
function generateKeyPair(type: 'ed25519', options: ED25519KeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
function generateKeyPair(type: 'ed25519', options: ED25519KeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
function generateKeyPair(type: 'ed25519', options: ED25519KeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
function generateKeyPair(type: 'ed25519', options: ED25519KeyPairKeyObjectOptions | undefined, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
function generateKeyPair(type: 'ed448', options: ED448KeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
function generateKeyPair(type: 'ed448', options: ED448KeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
function generateKeyPair(type: 'ed448', options: ED448KeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
function generateKeyPair(type: 'ed448', options: ED448KeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
function generateKeyPair(type: 'ed448', options: ED448KeyPairKeyObjectOptions | undefined, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
function generateKeyPair(type: 'x25519', options: X25519KeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
function generateKeyPair(type: 'x25519', options: X25519KeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
function generateKeyPair(type: 'x25519', options: X25519KeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
function generateKeyPair(type: 'x25519', options: X25519KeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
function generateKeyPair(type: 'x25519', options: X25519KeyPairKeyObjectOptions | undefined, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
function generateKeyPair(type: 'x448', options: X448KeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
function generateKeyPair(type: 'x448', options: X448KeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
function generateKeyPair(type: 'x448', options: X448KeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
function generateKeyPair(type: 'x448', options: X448KeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
function generateKeyPair(type: 'x448', options: X448KeyPairKeyObjectOptions | undefined, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
namespace generateKeyPair {
function __promisify__(
type: 'rsa',
options: RSAKeyPairOptions<'pem', 'pem'>
): Promise<{
publicKey: string;
privateKey: string;
}>;
function __promisify__(
type: 'rsa',
options: RSAKeyPairOptions<'pem', 'der'>
): Promise<{
publicKey: string;
privateKey: Buffer;
}>;
function __promisify__(
type: 'rsa',
options: RSAKeyPairOptions<'der', 'pem'>
): Promise<{
publicKey: Buffer;
privateKey: string;
}>;
function __promisify__(
type: 'rsa',
options: RSAKeyPairOptions<'der', 'der'>
): Promise<{
publicKey: Buffer;
privateKey: Buffer;
}>;
function __promisify__(type: 'rsa', options: RSAKeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
function __promisify__(
type: 'rsa-pss',
options: RSAPSSKeyPairOptions<'pem', 'pem'>
): Promise<{
publicKey: string;
privateKey: string;
}>;
function __promisify__(
type: 'rsa-pss',
options: RSAPSSKeyPairOptions<'pem', 'der'>
): Promise<{
publicKey: string;
privateKey: Buffer;
}>;
function __promisify__(
type: 'rsa-pss',
options: RSAPSSKeyPairOptions<'der', 'pem'>
): Promise<{
publicKey: Buffer;
privateKey: string;
}>;
function __promisify__(
type: 'rsa-pss',
options: RSAPSSKeyPairOptions<'der', 'der'>
): Promise<{
publicKey: Buffer;
privateKey: Buffer;
}>;
function __promisify__(type: 'rsa-pss', options: RSAPSSKeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
function __promisify__(
type: 'dsa',
options: DSAKeyPairOptions<'pem', 'pem'>
): Promise<{
publicKey: string;
privateKey: string;
}>;
function __promisify__(
type: 'dsa',
options: DSAKeyPairOptions<'pem', 'der'>
): Promise<{
publicKey: string;
privateKey: Buffer;
}>;
function __promisify__(
type: 'dsa',
options: DSAKeyPairOptions<'der', 'pem'>
): Promise<{
publicKey: Buffer;
privateKey: string;
}>;
function __promisify__(
type: 'dsa',
options: DSAKeyPairOptions<'der', 'der'>
): Promise<{
publicKey: Buffer;
privateKey: Buffer;
}>;
function __promisify__(type: 'dsa', options: DSAKeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
function __promisify__(
type: 'ec',
options: ECKeyPairOptions<'pem', 'pem'>
): Promise<{
publicKey: string;
privateKey: string;
}>;
function __promisify__(
type: 'ec',
options: ECKeyPairOptions<'pem', 'der'>
): Promise<{
publicKey: string;
privateKey: Buffer;
}>;
function __promisify__(
type: 'ec',
options: ECKeyPairOptions<'der', 'pem'>
): Promise<{
publicKey: Buffer;
privateKey: string;
}>;
function __promisify__(
type: 'ec',
options: ECKeyPairOptions<'der', 'der'>
): Promise<{
publicKey: Buffer;
privateKey: Buffer;
}>;
function __promisify__(type: 'ec', options: ECKeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
function __promisify__(
type: 'ed25519',
options: ED25519KeyPairOptions<'pem', 'pem'>
): Promise<{
publicKey: string;
privateKey: string;
}>;
function __promisify__(
type: 'ed25519',
options: ED25519KeyPairOptions<'pem', 'der'>
): Promise<{
publicKey: string;
privateKey: Buffer;
}>;
function __promisify__(
type: 'ed25519',
options: ED25519KeyPairOptions<'der', 'pem'>
): Promise<{
publicKey: Buffer;
privateKey: string;
}>;
function __promisify__(
type: 'ed25519',
options: ED25519KeyPairOptions<'der', 'der'>
): Promise<{
publicKey: Buffer;
privateKey: Buffer;
}>;
function __promisify__(type: 'ed25519', options?: ED25519KeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
function __promisify__(
type: 'ed448',
options: ED448KeyPairOptions<'pem', 'pem'>
): Promise<{
publicKey: string;
privateKey: string;
}>;
function __promisify__(
type: 'ed448',
options: ED448KeyPairOptions<'pem', 'der'>
): Promise<{
publicKey: string;
privateKey: Buffer;
}>;
function __promisify__(
type: 'ed448',
options: ED448KeyPairOptions<'der', 'pem'>
): Promise<{
publicKey: Buffer;
privateKey: string;
}>;
function __promisify__(
type: 'ed448',
options: ED448KeyPairOptions<'der', 'der'>
): Promise<{
publicKey: Buffer;
privateKey: Buffer;
}>;
function __promisify__(type: 'ed448', options?: ED448KeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
function __promisify__(
type: 'x25519',
options: X25519KeyPairOptions<'pem', 'pem'>
): Promise<{
publicKey: string;
privateKey: string;
}>;
function __promisify__(
type: 'x25519',
options: X25519KeyPairOptions<'pem', 'der'>
): Promise<{
publicKey: string;
privateKey: Buffer;
}>;
function __promisify__(
type: 'x25519',
options: X25519KeyPairOptions<'der', 'pem'>
): Promise<{
publicKey: Buffer;
privateKey: string;
}>;
function __promisify__(
type: 'x25519',
options: X25519KeyPairOptions<'der', 'der'>
): Promise<{
publicKey: Buffer;
privateKey: Buffer;
}>;
function __promisify__(type: 'x25519', options?: X25519KeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
function __promisify__(
type: 'x448',
options: X448KeyPairOptions<'pem', 'pem'>
): Promise<{
publicKey: string;
privateKey: string;
}>;
function __promisify__(
type: 'x448',
options: X448KeyPairOptions<'pem', 'der'>
): Promise<{
publicKey: string;
privateKey: Buffer;
}>;
function __promisify__(
type: 'x448',
options: X448KeyPairOptions<'der', 'pem'>
): Promise<{
publicKey: Buffer;
privateKey: string;
}>;
function __promisify__(
type: 'x448',
options: X448KeyPairOptions<'der', 'der'>
): Promise<{
publicKey: Buffer;
privateKey: Buffer;
}>;
function __promisify__(type: 'x448', options?: X448KeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
}
/**
* Calculates and returns the signature for `data` using the given private key and
* algorithm. If `algorithm` is `null` or `undefined`, then the algorithm is
* dependent upon the key type (especially Ed25519 and Ed448).
*
* If `key` is not a `KeyObject`, this function behaves as if `key` had been
* passed to {@link createPrivateKey}. If it is an object, the following
* additional properties can be passed:
*
* If the `callback` function is provided this function uses libuv's threadpool.
* @since v12.0.0
*/
function sign(algorithm: string | null | undefined, data: NodeJS.ArrayBufferView, key: KeyLike | SignKeyObjectInput | SignPrivateKeyInput): Buffer;
function sign(
algorithm: string | null | undefined,
data: NodeJS.ArrayBufferView,
key: KeyLike | SignKeyObjectInput | SignPrivateKeyInput,
callback: (error: Error | null, data: Buffer) => void
): void;
/**
* Verifies the given signature for `data` using the given key and algorithm. If`algorithm` is `null` or `undefined`, then the algorithm is dependent upon the
* key type (especially Ed25519 and Ed448).
*
* If `key` is not a `KeyObject`, this function behaves as if `key` had been
* passed to {@link createPublicKey}. If it is an object, the following
* additional properties can be passed:
*
* The `signature` argument is the previously calculated signature for the `data`.
*
* Because public keys can be derived from private keys, a private key or a public
* key may be passed for `key`.
*
* If the `callback` function is provided this function uses libuv's threadpool.
* @since v12.0.0
*/
function verify(algorithm: string | null | undefined, data: NodeJS.ArrayBufferView, key: KeyLike | VerifyKeyObjectInput | VerifyPublicKeyInput, signature: NodeJS.ArrayBufferView): boolean;
function verify(
algorithm: string | null | undefined,
data: NodeJS.ArrayBufferView,
key: KeyLike | VerifyKeyObjectInput | VerifyPublicKeyInput,
signature: NodeJS.ArrayBufferView,
callback: (error: Error | null, result: boolean) => void
): void;
/**
* Computes the Diffie-Hellman secret based on a `privateKey` and a `publicKey`.
* Both keys must have the same `asymmetricKeyType`, which must be one of `'dh'`(for Diffie-Hellman), `'ec'` (for ECDH), `'x448'`, or `'x25519'` (for ECDH-ES).
* @since v13.9.0, v12.17.0
*/
function diffieHellman(options: { privateKey: KeyObject; publicKey: KeyObject }): Buffer;
type CipherMode = 'cbc' | 'ccm' | 'cfb' | 'ctr' | 'ecb' | 'gcm' | 'ocb' | 'ofb' | 'stream' | 'wrap' | 'xts';
interface CipherInfoOptions {
/**
* A test key length.
*/
keyLength?: number | undefined;
/**
* A test IV length.
*/
ivLength?: number | undefined;
}
interface CipherInfo {
/**
* The name of the cipher.
*/
name: string;
/**
* The nid of the cipher.
*/
nid: number;
/**
* The block size of the cipher in bytes.
* This property is omitted when mode is 'stream'.
*/
blockSize?: number | undefined;
/**
* The expected or default initialization vector length in bytes.
* This property is omitted if the cipher does not use an initialization vector.
*/
ivLength?: number | undefined;
/**
* The expected or default key length in bytes.
*/
keyLength: number;
/**
* The cipher mode.
*/
mode: CipherMode;
}
/**
* Returns information about a given cipher.
*
* Some ciphers accept variable length keys and initialization vectors. By default,
* the `crypto.getCipherInfo()` method will return the default values for these
* ciphers. To test if a given key length or iv length is acceptable for given
* cipher, use the `keyLength` and `ivLength` options. If the given values are
* unacceptable, `undefined` will be returned.
* @since v15.0.0
* @param nameOrNid The name or nid of the cipher to query.
*/
function getCipherInfo(nameOrNid: string | number, options?: CipherInfoOptions): CipherInfo | undefined;
/**
* HKDF is a simple key derivation function defined in RFC 5869\. The given `ikm`,`salt` and `info` are used with the `digest` to derive a key of `keylen` bytes.
*
* The supplied `callback` function is called with two arguments: `err` and`derivedKey`. If an errors occurs while deriving the key, `err` will be set;
* otherwise `err` will be `null`. The successfully generated `derivedKey` will
* be passed to the callback as an [ArrayBuffer](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer). An error will be thrown if any
* of the input arguments specify invalid values or types.
*
* ```js
* import { Buffer } from 'buffer';
* const {
* hkdf
* } = await import('crypto');
*
* hkdf('sha512', 'key', 'salt', 'info', 64, (err, derivedKey) => {
* if (err) throw err;
* console.log(Buffer.from(derivedKey).toString('hex')); // '24156e2...5391653'
* });
* ```
* @since v15.0.0
* @param digest The digest algorithm to use.
* @param ikm The input keying material. It must be at least one byte in length.
* @param salt The salt value. Must be provided but can be zero-length.
* @param info Additional info value. Must be provided but can be zero-length, and cannot be more than 1024 bytes.
* @param keylen The length of the key to generate. Must be greater than 0. The maximum allowable value is `255` times the number of bytes produced by the selected digest function (e.g. `sha512`
* generates 64-byte hashes, making the maximum HKDF output 16320 bytes).
*/
function hkdf(digest: string, irm: BinaryLike | KeyObject, salt: BinaryLike, info: BinaryLike, keylen: number, callback: (err: Error | null, derivedKey: ArrayBuffer) => void): void;
/**
* Provides a synchronous HKDF key derivation function as defined in RFC 5869\. The
* given `ikm`, `salt` and `info` are used with the `digest` to derive a key of`keylen` bytes.
*
* The successfully generated `derivedKey` will be returned as an [ArrayBuffer](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer).
*
* An error will be thrown if any of the input arguments specify invalid values or
* types, or if the derived key cannot be generated.
*
* ```js
* import { Buffer } from 'buffer';
* const {
* hkdfSync
* } = await import('crypto');
*
* const derivedKey = hkdfSync('sha512', 'key', 'salt', 'info', 64);
* console.log(Buffer.from(derivedKey).toString('hex')); // '24156e2...5391653'
* ```
* @since v15.0.0
* @param digest The digest algorithm to use.
* @param ikm The input keying material. It must be at least one byte in length.
* @param salt The salt value. Must be provided but can be zero-length.
* @param info Additional info value. Must be provided but can be zero-length, and cannot be more than 1024 bytes.
* @param keylen The length of the key to generate. Must be greater than 0. The maximum allowable value is `255` times the number of bytes produced by the selected digest function (e.g. `sha512`
* generates 64-byte hashes, making the maximum HKDF output 16320 bytes).
*/
function hkdfSync(digest: string, ikm: BinaryLike | KeyObject, salt: BinaryLike, info: BinaryLike, keylen: number): ArrayBuffer;
interface SecureHeapUsage {
/**
* The total allocated secure heap size as specified using the `--secure-heap=n` command-line flag.
*/
total: number;
/**
* The minimum allocation from the secure heap as specified using the `--secure-heap-min` command-line flag.
*/
min: number;
/**
* The total number of bytes currently allocated from the secure heap.
*/
used: number;
/**
* The calculated ratio of `used` to `total` allocated bytes.
*/
utilization: number;
}
/**
* @since v15.6.0
*/
function secureHeapUsed(): SecureHeapUsage;
interface RandomUUIDOptions {
/**
* By default, to improve performance,
* Node.js will pre-emptively generate and persistently cache enough
* random data to generate up to 128 random UUIDs. To generate a UUID
* without using the cache, set `disableEntropyCache` to `true`.
*
* @default `false`
*/
disableEntropyCache?: boolean | undefined;
}
/**
* Generates a random [RFC 4122](https://www.rfc-editor.org/rfc/rfc4122.txt) version 4 UUID. The UUID is generated using a
* cryptographic pseudorandom number generator.
* @since v15.6.0, v14.17.0
*/
function randomUUID(options?: RandomUUIDOptions): string;
interface X509CheckOptions {
/**
* @default 'always'
*/
subject: 'always' | 'never';
/**
* @default true
*/
wildcards: boolean;
/**
* @default true
*/
partialWildcards: boolean;
/**
* @default false
*/
multiLabelWildcards: boolean;
/**
* @default false
*/
singleLabelSubdomains: boolean;
}
/**
* Encapsulates an X509 certificate and provides read-only access to
* its information.
*
* ```js
* const { X509Certificate } = await import('crypto');
*
* const x509 = new X509Certificate('{... pem encoded cert ...}');
*
* console.log(x509.subject);
* ```
* @since v15.6.0
*/
class X509Certificate {
/**
* Will be \`true\` if this is a Certificate Authority (CA) certificate.
* @since v15.6.0
*/
readonly ca: boolean;
/**
* The SHA-1 fingerprint of this certificate.
*
* Because SHA-1 is cryptographically broken and because the security of SHA-1 is
* significantly worse than that of algorithms that are commonly used to sign
* certificates, consider using `x509.fingerprint256` instead.
* @since v15.6.0
*/
readonly fingerprint: string;
/**
* The SHA-256 fingerprint of this certificate.
* @since v15.6.0
*/
readonly fingerprint256: string;
/**
* The SHA-512 fingerprint of this certificate.
* @since v16.14.0
*/
readonly fingerprint512: string;
/**
* The complete subject of this certificate.
* @since v15.6.0
*/
readonly subject: string;
/**
* The subject alternative name specified for this certificate or `undefined`
* if not available.
* @since v15.6.0
*/
readonly subjectAltName: string | undefined;
/**
* The information access content of this certificate or `undefined` if not
* available.
* @since v15.6.0
*/
readonly infoAccess: string | undefined;
/**
* An array detailing the key usages for this certificate.
* @since v15.6.0
*/
readonly keyUsage: string[];
/**
* The issuer identification included in this certificate.
* @since v15.6.0
*/
readonly issuer: string;
/**
* The issuer certificate or `undefined` if the issuer certificate is not
* available.
* @since v15.9.0
*/
readonly issuerCertificate?: X509Certificate | undefined;
/**
* The public key `KeyObject` for this certificate.
* @since v15.6.0
*/
readonly publicKey: KeyObject;
/**
* A `Buffer` containing the DER encoding of this certificate.
* @since v15.6.0
*/
readonly raw: Buffer;
/**
* The serial number of this certificate.
*
* Serial numbers are assigned by certificate authorities and do not uniquely
* identify certificates. Consider using `x509.fingerprint256` as a unique
* identifier instead.
* @since v15.6.0
*/
readonly serialNumber: string;
/**
* The date/time from which this certificate is considered valid.
* @since v15.6.0
*/
readonly validFrom: string;
/**
* The date/time until which this certificate is considered valid.
* @since v15.6.0
*/
readonly validTo: string;
constructor(buffer: BinaryLike);
/**
* Checks whether the certificate matches the given email address.
*
* If the `'subject'` option is undefined or set to `'default'`, the certificate
* subject is only considered if the subject alternative name extension either does
* not exist or does not contain any email addresses.
*
* If the `'subject'` option is set to `'always'` and if the subject alternative
* name extension either does not exist or does not contain a matching email
* address, the certificate subject is considered.
*
* If the `'subject'` option is set to `'never'`, the certificate subject is never
* considered, even if the certificate contains no subject alternative names.
* @since v15.6.0
* @return Returns `email` if the certificate matches, `undefined` if it does not.
*/
checkEmail(email: string, options?: Pick<X509CheckOptions, 'subject'>): string | undefined;
/**
* Checks whether the certificate matches the given host name.
*
* If the certificate matches the given host name, the matching subject name is
* returned. The returned name might be an exact match (e.g., `foo.example.com`)
* or it might contain wildcards (e.g., `*.example.com`). Because host name
* comparisons are case-insensitive, the returned subject name might also differ
* from the given `name` in capitalization.
*
* If the `'subject'` option is undefined or set to `'default'`, the certificate
* subject is only considered if the subject alternative name extension either does
* not exist or does not contain any DNS names. This behavior is consistent with [RFC 2818](https://www.rfc-editor.org/rfc/rfc2818.txt) ("HTTP Over TLS").
*
* If the `'subject'` option is set to `'always'` and if the subject alternative
* name extension either does not exist or does not contain a matching DNS name,
* the certificate subject is considered.
*
* If the `'subject'` option is set to `'never'`, the certificate subject is never
* considered, even if the certificate contains no subject alternative names.
* @since v15.6.0
* @return Returns a subject name that matches `name`, or `undefined` if no subject name matches `name`.
*/
checkHost(name: string, options?: X509CheckOptions): string | undefined;
/**
* Checks whether the certificate matches the given IP address (IPv4 or IPv6).
*
* Only [RFC 5280](https://www.rfc-editor.org/rfc/rfc5280.txt) `iPAddress` subject alternative names are considered, and they
* must match the given `ip` address exactly. Other subject alternative names as
* well as the subject field of the certificate are ignored.
* @since v15.6.0
* @return Returns `ip` if the certificate matches, `undefined` if it does not.
*/
checkIP(ip: string): string | undefined;
/**
* Checks whether this certificate was issued by the given `otherCert`.
* @since v15.6.0
*/
checkIssued(otherCert: X509Certificate): boolean;
/**
* Checks whether the public key for this certificate is consistent with
* the given private key.
* @since v15.6.0
* @param privateKey A private key.
*/
checkPrivateKey(privateKey: KeyObject): boolean;
/**
* There is no standard JSON encoding for X509 certificates. The`toJSON()` method returns a string containing the PEM encoded
* certificate.
* @since v15.6.0
*/
toJSON(): string;
/**
* Returns information about this certificate using the legacy `certificate object` encoding.
* @since v15.6.0
*/
toLegacyObject(): PeerCertificate;
/**
* Returns the PEM-encoded certificate.
* @since v15.6.0
*/
toString(): string;
/**
* Verifies that this certificate was signed by the given public key.
* Does not perform any other validation checks on the certificate.
* @since v15.6.0
* @param publicKey A public key.
*/
verify(publicKey: KeyObject): boolean;
}
type LargeNumberLike = NodeJS.ArrayBufferView | SharedArrayBuffer | ArrayBuffer | bigint;
interface GeneratePrimeOptions {
add?: LargeNumberLike | undefined;
rem?: LargeNumberLike | undefined;
/**
* @default false
*/
safe?: boolean | undefined;
bigint?: boolean | undefined;
}
interface GeneratePrimeOptionsBigInt extends GeneratePrimeOptions {
bigint: true;
}
interface GeneratePrimeOptionsArrayBuffer extends GeneratePrimeOptions {
bigint?: false | undefined;
}
/**
* Generates a pseudorandom prime of `size` bits.
*
* If `options.safe` is `true`, the prime will be a safe prime -- that is,`(prime - 1) / 2` will also be a prime.
*
* The `options.add` and `options.rem` parameters can be used to enforce additional
* requirements, e.g., for Diffie-Hellman:
*
* * If `options.add` and `options.rem` are both set, the prime will satisfy the
* condition that `prime % add = rem`.
* * If only `options.add` is set and `options.safe` is not `true`, the prime will
* satisfy the condition that `prime % add = 1`.
* * If only `options.add` is set and `options.safe` is set to `true`, the prime
* will instead satisfy the condition that `prime % add = 3`. This is necessary
* because `prime % add = 1` for `options.add > 2` would contradict the condition
* enforced by `options.safe`.
* * `options.rem` is ignored if `options.add` is not given.
*
* Both `options.add` and `options.rem` must be encoded as big-endian sequences
* if given as an `ArrayBuffer`, `SharedArrayBuffer`, `TypedArray`, `Buffer`, or`DataView`.
*
* By default, the prime is encoded as a big-endian sequence of octets
* in an [ArrayBuffer](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer). If the `bigint` option is `true`, then a
* [bigint](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt) is provided.
* @since v15.8.0
* @param size The size (in bits) of the prime to generate.
*/
function generatePrime(size: number, callback: (err: Error | null, prime: ArrayBuffer) => void): void;
function generatePrime(size: number, options: GeneratePrimeOptionsBigInt, callback: (err: Error | null, prime: bigint) => void): void;
function generatePrime(size: number, options: GeneratePrimeOptionsArrayBuffer, callback: (err: Error | null, prime: ArrayBuffer) => void): void;
function generatePrime(size: number, options: GeneratePrimeOptions, callback: (err: Error | null, prime: ArrayBuffer | bigint) => void): void;
/**
* Generates a pseudorandom prime of `size` bits.
*
* If `options.safe` is `true`, the prime will be a safe prime -- that is,`(prime - 1) / 2` will also be a prime.
*
* The `options.add` and `options.rem` parameters can be used to enforce additional
* requirements, e.g., for Diffie-Hellman:
*
* * If `options.add` and `options.rem` are both set, the prime will satisfy the
* condition that `prime % add = rem`.
* * If only `options.add` is set and `options.safe` is not `true`, the prime will
* satisfy the condition that `prime % add = 1`.
* * If only `options.add` is set and `options.safe` is set to `true`, the prime
* will instead satisfy the condition that `prime % add = 3`. This is necessary
* because `prime % add = 1` for `options.add > 2` would contradict the condition
* enforced by `options.safe`.
* * `options.rem` is ignored if `options.add` is not given.
*
* Both `options.add` and `options.rem` must be encoded as big-endian sequences
* if given as an `ArrayBuffer`, `SharedArrayBuffer`, `TypedArray`, `Buffer`, or`DataView`.
*
* By default, the prime is encoded as a big-endian sequence of octets
* in an [ArrayBuffer](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer). If the `bigint` option is `true`, then a
* [bigint](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt) is provided.
* @since v15.8.0
* @param size The size (in bits) of the prime to generate.
*/
function generatePrimeSync(size: number): ArrayBuffer;
function generatePrimeSync(size: number, options: GeneratePrimeOptionsBigInt): bigint;
function generatePrimeSync(size: number, options: GeneratePrimeOptionsArrayBuffer): ArrayBuffer;
function generatePrimeSync(size: number, options: GeneratePrimeOptions): ArrayBuffer | bigint;
interface CheckPrimeOptions {
/**
* The number of Miller-Rabin probabilistic primality iterations to perform.
* When the value is 0 (zero), a number of checks is used that yields a false positive rate of at most 2-64 for random input.
* Care must be used when selecting a number of checks.
* Refer to the OpenSSL documentation for the BN_is_prime_ex function nchecks options for more details.
*
* @default 0
*/
checks?: number | undefined;
}
/**
* Checks the primality of the `candidate`.
* @since v15.8.0
* @param candidate A possible prime encoded as a sequence of big endian octets of arbitrary length.
*/
function checkPrime(value: LargeNumberLike, callback: (err: Error | null, result: boolean) => void): void;
function checkPrime(value: LargeNumberLike, options: CheckPrimeOptions, callback: (err: Error | null, result: boolean) => void): void;
/**
* Checks the primality of the `candidate`.
* @since v15.8.0
* @param candidate A possible prime encoded as a sequence of big endian octets of arbitrary length.
* @return `true` if the candidate is a prime with an error probability less than `0.25 ** options.checks`.
*/
function checkPrimeSync(candidate: LargeNumberLike, options?: CheckPrimeOptions): boolean;
/**
* Load and set the `engine` for some or all OpenSSL functions (selected by flags).
*
* `engine` could be either an id or a path to the engine's shared library.
*
* The optional `flags` argument uses `ENGINE_METHOD_ALL` by default.
* The `flags` is a bit field taking one of or a mix of the following flags (defined in `crypto.constants`):
*
* - `crypto.constants.ENGINE_METHOD_RSA`
* - `crypto.constants.ENGINE_METHOD_DSA`
* - `crypto.constants.ENGINE_METHOD_DH`
* - `crypto.constants.ENGINE_METHOD_RAND`
* - `crypto.constants.ENGINE_METHOD_EC`
* - `crypto.constants.ENGINE_METHOD_CIPHERS`
* - `crypto.constants.ENGINE_METHOD_DIGESTS`
* - `crypto.constants.ENGINE_METHOD_PKEY_METHS`
* - `crypto.constants.ENGINE_METHOD_PKEY_ASN1_METHS`
* - `crypto.constants.ENGINE_METHOD_ALL`
* - `crypto.constants.ENGINE_METHOD_NONE`
*
* The flags below are deprecated in OpenSSL-1.1.0.
*
* - `crypto.constants.ENGINE_METHOD_ECDH`
* - `crypto.constants.ENGINE_METHOD_ECDSA`
* - `crypto.constants.ENGINE_METHOD_STORE`
* @since v0.11.11
* @param [flags=crypto.constants.ENGINE_METHOD_ALL]
*/
function setEngine(engine: string, flags?: number): void;
/**
* A convenient alias for `crypto.webcrypto.getRandomValues()`.
* This implementation is not compliant with the Web Crypto spec,
* to write web-compatible code use `crypto.webcrypto.getRandomValues()` instead.
* @since v17.4.0
* @returns Returns `typedArray`.
*/
function getRandomValues<T extends webcrypto.BufferSource>(typedArray: T): T;
/**
* A convenient alias for `crypto.webcrypto.subtle`.
* @since v17.4.0
*/
const subtle: webcrypto.SubtleCrypto;
/**
* An implementation of the Web Crypto API standard.
*
* See the {@link https://nodejs.org/docs/latest/api/webcrypto.html Web Crypto API documentation} for details.
* @since v15.0.0
*/
const webcrypto: webcrypto.Crypto;
namespace webcrypto {
type BufferSource = ArrayBufferView | ArrayBuffer;
type KeyFormat = 'jwk' | 'pkcs8' | 'raw' | 'spki';
type KeyType = 'private' | 'public' | 'secret';
type KeyUsage = 'decrypt' | 'deriveBits' | 'deriveKey' | 'encrypt' | 'sign' | 'unwrapKey' | 'verify' | 'wrapKey';
type AlgorithmIdentifier = Algorithm | string;
type HashAlgorithmIdentifier = AlgorithmIdentifier;
type NamedCurve = string;
type BigInteger = Uint8Array;
interface AesCbcParams extends Algorithm {
iv: BufferSource;
}
interface AesCtrParams extends Algorithm {
counter: BufferSource;
length: number;
}
interface AesDerivedKeyParams extends Algorithm {
length: number;
}
interface AesGcmParams extends Algorithm {
additionalData?: BufferSource;
iv: BufferSource;
tagLength?: number;
}
interface AesKeyAlgorithm extends KeyAlgorithm {
length: number;
}
interface AesKeyGenParams extends Algorithm {
length: number;
}
interface Algorithm {
name: string;
}
interface EcKeyAlgorithm extends KeyAlgorithm {
namedCurve: NamedCurve;
}
interface EcKeyGenParams extends Algorithm {
namedCurve: NamedCurve;
}
interface EcKeyImportParams extends Algorithm {
namedCurve: NamedCurve;
}
interface EcdhKeyDeriveParams extends Algorithm {
public: CryptoKey;
}
interface EcdsaParams extends Algorithm {
hash: HashAlgorithmIdentifier;
}
interface Ed448Params extends Algorithm {
context?: BufferSource;
}
interface HkdfParams extends Algorithm {
hash: HashAlgorithmIdentifier;
info: BufferSource;
salt: BufferSource;
}
interface HmacImportParams extends Algorithm {
hash: HashAlgorithmIdentifier;
length?: number;
}
interface HmacKeyAlgorithm extends KeyAlgorithm {
hash: KeyAlgorithm;
length: number;
}
interface HmacKeyGenParams extends Algorithm {
hash: HashAlgorithmIdentifier;
length?: number;
}
interface JsonWebKey {
alg?: string;
crv?: string;
d?: string;
dp?: string;
dq?: string;
e?: string;
ext?: boolean;
k?: string;
key_ops?: string[];
kty?: string;
n?: string;
oth?: RsaOtherPrimesInfo[];
p?: string;
q?: string;
qi?: string;
use?: string;
x?: string;
y?: string;
}
interface KeyAlgorithm {
name: string;
}
interface Pbkdf2Params extends Algorithm {
hash: HashAlgorithmIdentifier;
iterations: number;
salt: BufferSource;
}
interface RsaHashedImportParams extends Algorithm {
hash: HashAlgorithmIdentifier;
}
interface RsaHashedKeyAlgorithm extends RsaKeyAlgorithm {
hash: KeyAlgorithm;
}
interface RsaHashedKeyGenParams extends RsaKeyGenParams {
hash: HashAlgorithmIdentifier;
}
interface RsaKeyAlgorithm extends KeyAlgorithm {
modulusLength: number;
publicExponent: BigInteger;
}
interface RsaKeyGenParams extends Algorithm {
modulusLength: number;
publicExponent: BigInteger;
}
interface RsaOaepParams extends Algorithm {
label?: BufferSource;
}
interface RsaOtherPrimesInfo {
d?: string;
r?: string;
t?: string;
}
interface RsaPssParams extends Algorithm {
saltLength: number;
}
/**
* Calling `require('node:crypto').webcrypto` returns an instance of the `Crypto` class.
* `Crypto` is a singleton that provides access to the remainder of the crypto API.
* @since v15.0.0
*/
interface Crypto {
/**
* Provides access to the `SubtleCrypto` API.
* @since v15.0.0
*/
readonly subtle: SubtleCrypto;
/**
* Generates cryptographically strong random values.
* The given `typedArray` is filled with random values, and a reference to `typedArray` is returned.
*
* The given `typedArray` must be an integer-based instance of {@link NodeJS.TypedArray}, i.e. `Float32Array` and `Float64Array` are not accepted.
*
* An error will be thrown if the given `typedArray` is larger than 65,536 bytes.
* @since v15.0.0
*/
getRandomValues<T extends Exclude<NodeJS.TypedArray, Float32Array | Float64Array>>(typedArray: T): T;
/**
* Generates a random {@link https://www.rfc-editor.org/rfc/rfc4122.txt RFC 4122} version 4 UUID.
* The UUID is generated using a cryptographic pseudorandom number generator.
* @since v16.7.0
*/
randomUUID(): string;
CryptoKey: CryptoKeyConstructor;
}
// This constructor throws ILLEGAL_CONSTRUCTOR so it should not be newable.
interface CryptoKeyConstructor {
/** Illegal constructor */
(_: { readonly _: unique symbol }): never; // Allows instanceof to work but not be callable by the user.
readonly length: 0;
readonly name: 'CryptoKey';
readonly prototype: CryptoKey;
}
/**
* @since v15.0.0
*/
interface CryptoKey {
/**
* An object detailing the algorithm for which the key can be used along with additional algorithm-specific parameters.
* @since v15.0.0
*/
readonly algorithm: KeyAlgorithm;
/**
* When `true`, the {@link CryptoKey} can be extracted using either `subtleCrypto.exportKey()` or `subtleCrypto.wrapKey()`.
* @since v15.0.0
*/
readonly extractable: boolean;
/**
* A string identifying whether the key is a symmetric (`'secret'`) or asymmetric (`'private'` or `'public'`) key.
* @since v15.0.0
*/
readonly type: KeyType;
/**
* An array of strings identifying the operations for which the key may be used.
*
* The possible usages are:
* - `'encrypt'` - The key may be used to encrypt data.
* - `'decrypt'` - The key may be used to decrypt data.
* - `'sign'` - The key may be used to generate digital signatures.
* - `'verify'` - The key may be used to verify digital signatures.
* - `'deriveKey'` - The key may be used to derive a new key.
* - `'deriveBits'` - The key may be used to derive bits.
* - `'wrapKey'` - The key may be used to wrap another key.
* - `'unwrapKey'` - The key may be used to unwrap another key.
*
* Valid key usages depend on the key algorithm (identified by `cryptokey.algorithm.name`).
* @since v15.0.0
*/
readonly usages: KeyUsage[];
}
/**
* The `CryptoKeyPair` is a simple dictionary object with `publicKey` and `privateKey` properties, representing an asymmetric key pair.
* @since v15.0.0
*/
interface CryptoKeyPair {
/**
* A {@link CryptoKey} whose type will be `'private'`.
* @since v15.0.0
*/
privateKey: CryptoKey;
/**
* A {@link CryptoKey} whose type will be `'public'`.
* @since v15.0.0
*/
publicKey: CryptoKey;
}
/**
* @since v15.0.0
*/
interface SubtleCrypto {
/**
* Using the method and parameters specified in `algorithm` and the keying material provided by `key`,
* `subtle.decrypt()` attempts to decipher the provided `data`. If successful,
* the returned promise will be resolved with an `<ArrayBuffer>` containing the plaintext result.
*
* The algorithms currently supported include:
*
* - `'RSA-OAEP'`
* - `'AES-CTR'`
* - `'AES-CBC'`
* - `'AES-GCM'`
* @since v15.0.0
*/
decrypt(algorithm: AlgorithmIdentifier | RsaOaepParams | AesCtrParams | AesCbcParams | AesGcmParams, key: CryptoKey, data: BufferSource): Promise<ArrayBuffer>;
/**
* Using the method and parameters specified in `algorithm` and the keying material provided by `baseKey`,
* `subtle.deriveBits()` attempts to generate `length` bits.
* The Node.js implementation requires that `length` is a multiple of `8`.
* If successful, the returned promise will be resolved with an `<ArrayBuffer>` containing the generated data.
*
* The algorithms currently supported include:
*
* - `'ECDH'`
* - `'X25519'`
* - `'X448'`
* - `'HKDF'`
* - `'PBKDF2'`
* @since v15.0.0
*/
deriveBits(algorithm: AlgorithmIdentifier | EcdhKeyDeriveParams | HkdfParams | Pbkdf2Params, baseKey: CryptoKey, length: number): Promise<ArrayBuffer>;
/**
* Using the method and parameters specified in `algorithm`, and the keying material provided by `baseKey`,
* `subtle.deriveKey()` attempts to generate a new <CryptoKey>` based on the method and parameters in `derivedKeyAlgorithm`.
*
* Calling `subtle.deriveKey()` is equivalent to calling `subtle.deriveBits()` to generate raw keying material,
* then passing the result into the `subtle.importKey()` method using the `deriveKeyAlgorithm`, `extractable`, and `keyUsages` parameters as input.
*
* The algorithms currently supported include:
*
* - `'ECDH'`
* - `'X25519'`
* - `'X448'`
* - `'HKDF'`
* - `'PBKDF2'`
* @param keyUsages See {@link https://nodejs.org/docs/latest/api/webcrypto.html#cryptokeyusages Key usages}.
* @since v15.0.0
*/
deriveKey(
algorithm: AlgorithmIdentifier | EcdhKeyDeriveParams | HkdfParams | Pbkdf2Params,
baseKey: CryptoKey,
derivedKeyAlgorithm: AlgorithmIdentifier | AesDerivedKeyParams | HmacImportParams | HkdfParams | Pbkdf2Params,
extractable: boolean,
keyUsages: ReadonlyArray<KeyUsage>
): Promise<CryptoKey>;
/**
* Using the method identified by `algorithm`, `subtle.digest()` attempts to generate a digest of `data`.
* If successful, the returned promise is resolved with an `<ArrayBuffer>` containing the computed digest.
*
* If `algorithm` is provided as a `<string>`, it must be one of:
*
* - `'SHA-1'`
* - `'SHA-256'`
* - `'SHA-384'`
* - `'SHA-512'`
*
* If `algorithm` is provided as an `<Object>`, it must have a `name` property whose value is one of the above.
* @since v15.0.0
*/
digest(algorithm: AlgorithmIdentifier, data: BufferSource): Promise<ArrayBuffer>;
/**
* Using the method and parameters specified by `algorithm` and the keying material provided by `key`,
* `subtle.encrypt()` attempts to encipher `data`. If successful,
* the returned promise is resolved with an `<ArrayBuffer>` containing the encrypted result.
*
* The algorithms currently supported include:
*
* - `'RSA-OAEP'`
* - `'AES-CTR'`
* - `'AES-CBC'`
* - `'AES-GCM'`
* @since v15.0.0
*/
encrypt(algorithm: AlgorithmIdentifier | RsaOaepParams | AesCtrParams | AesCbcParams | AesGcmParams, key: CryptoKey, data: BufferSource): Promise<ArrayBuffer>;
/**
* Exports the given key into the specified format, if supported.
*
* If the `<CryptoKey>` is not extractable, the returned promise will reject.
*
* When `format` is either `'pkcs8'` or `'spki'` and the export is successful,
* the returned promise will be resolved with an `<ArrayBuffer>` containing the exported key data.
*
* When `format` is `'jwk'` and the export is successful, the returned promise will be resolved with a
* JavaScript object conforming to the {@link https://tools.ietf.org/html/rfc7517 JSON Web Key} specification.
* @param format Must be one of `'raw'`, `'pkcs8'`, `'spki'`, or `'jwk'`.
* @returns `<Promise>` containing `<ArrayBuffer>`.
* @since v15.0.0
*/
exportKey(format: 'jwk', key: CryptoKey): Promise<JsonWebKey>;
exportKey(format: Exclude<KeyFormat, 'jwk'>, key: CryptoKey): Promise<ArrayBuffer>;
/**
* Using the method and parameters provided in `algorithm`,
* `subtle.generateKey()` attempts to generate new keying material.
* Depending the method used, the method may generate either a single `<CryptoKey>` or a `<CryptoKeyPair>`.
*
* The `<CryptoKeyPair>` (public and private key) generating algorithms supported include:
*
* - `'RSASSA-PKCS1-v1_5'`
* - `'RSA-PSS'`
* - `'RSA-OAEP'`
* - `'ECDSA'`
* - `'Ed25519'`
* - `'Ed448'`
* - `'ECDH'`
* - `'X25519'`
* - `'X448'`
* The `<CryptoKey>` (secret key) generating algorithms supported include:
*
* - `'HMAC'`
* - `'AES-CTR'`
* - `'AES-CBC'`
* - `'AES-GCM'`
* - `'AES-KW'`
* @param keyUsages See {@link https://nodejs.org/docs/latest/api/webcrypto.html#cryptokeyusages Key usages}.
* @since v15.0.0
*/
generateKey(algorithm: RsaHashedKeyGenParams | EcKeyGenParams, extractable: boolean, keyUsages: ReadonlyArray<KeyUsage>): Promise<CryptoKeyPair>;
generateKey(algorithm: AesKeyGenParams | HmacKeyGenParams | Pbkdf2Params, extractable: boolean, keyUsages: ReadonlyArray<KeyUsage>): Promise<CryptoKey>;
generateKey(algorithm: AlgorithmIdentifier, extractable: boolean, keyUsages: KeyUsage[]): Promise<CryptoKeyPair | CryptoKey>;
/**
* The `subtle.importKey()` method attempts to interpret the provided `keyData` as the given `format`
* to create a `<CryptoKey>` instance using the provided `algorithm`, `extractable`, and `keyUsages` arguments.
* If the import is successful, the returned promise will be resolved with the created `<CryptoKey>`.
*
* If importing a `'PBKDF2'` key, `extractable` must be `false`.
* @param format Must be one of `'raw'`, `'pkcs8'`, `'spki'`, or `'jwk'`.
* @param keyUsages See {@link https://nodejs.org/docs/latest/api/webcrypto.html#cryptokeyusages Key usages}.
* @since v15.0.0
*/
importKey(
format: 'jwk',
keyData: JsonWebKey,
algorithm: AlgorithmIdentifier | RsaHashedImportParams | EcKeyImportParams | HmacImportParams | AesKeyAlgorithm,
extractable: boolean,
keyUsages: ReadonlyArray<KeyUsage>
): Promise<CryptoKey>;
importKey(
format: Exclude<KeyFormat, 'jwk'>,
keyData: BufferSource,
algorithm: AlgorithmIdentifier | RsaHashedImportParams | EcKeyImportParams | HmacImportParams | AesKeyAlgorithm,
extractable: boolean,
keyUsages: KeyUsage[]
): Promise<CryptoKey>;
/**
* Using the method and parameters given by `algorithm` and the keying material provided by `key`,
* `subtle.sign()` attempts to generate a cryptographic signature of `data`. If successful,
* the returned promise is resolved with an `<ArrayBuffer>` containing the generated signature.
*
* The algorithms currently supported include:
*
* - `'RSASSA-PKCS1-v1_5'`
* - `'RSA-PSS'`
* - `'ECDSA'`
* - `'Ed25519'`
* - `'Ed448'`
* - `'HMAC'`
* @since v15.0.0
*/
sign(algorithm: AlgorithmIdentifier | RsaPssParams | EcdsaParams | Ed448Params, key: CryptoKey, data: BufferSource): Promise<ArrayBuffer>;
/**
* In cryptography, "wrapping a key" refers to exporting and then encrypting the keying material.
* The `subtle.unwrapKey()` method attempts to decrypt a wrapped key and create a `<CryptoKey>` instance.
* It is equivalent to calling `subtle.decrypt()` first on the encrypted key data (using the `wrappedKey`, `unwrapAlgo`, and `unwrappingKey` arguments as input)
* then passing the results in to the `subtle.importKey()` method using the `unwrappedKeyAlgo`, `extractable`, and `keyUsages` arguments as inputs.
* If successful, the returned promise is resolved with a `<CryptoKey>` object.
*
* The wrapping algorithms currently supported include:
*
* - `'RSA-OAEP'`
* - `'AES-CTR'`
* - `'AES-CBC'`
* - `'AES-GCM'`
* - `'AES-KW'`
*
* The unwrapped key algorithms supported include:
*
* - `'RSASSA-PKCS1-v1_5'`
* - `'RSA-PSS'`
* - `'RSA-OAEP'`
* - `'ECDSA'`
* - `'Ed25519'`
* - `'Ed448'`
* - `'ECDH'`
* - `'X25519'`
* - `'X448'`
* - `'HMAC'`
* - `'AES-CTR'`
* - `'AES-CBC'`
* - `'AES-GCM'`
* - `'AES-KW'`
* @param format Must be one of `'raw'`, `'pkcs8'`, `'spki'`, or `'jwk'`.
* @param keyUsages See {@link https://nodejs.org/docs/latest/api/webcrypto.html#cryptokeyusages Key usages}.
* @since v15.0.0
*/
unwrapKey(
format: KeyFormat,
wrappedKey: BufferSource,
unwrappingKey: CryptoKey,
unwrapAlgorithm: AlgorithmIdentifier | RsaOaepParams | AesCtrParams | AesCbcParams | AesGcmParams,
unwrappedKeyAlgorithm: AlgorithmIdentifier | RsaHashedImportParams | EcKeyImportParams | HmacImportParams | AesKeyAlgorithm,
extractable: boolean,
keyUsages: KeyUsage[]
): Promise<CryptoKey>;
/**
* Using the method and parameters given in `algorithm` and the keying material provided by `key`,
* `subtle.verify()` attempts to verify that `signature` is a valid cryptographic signature of `data`.
* The returned promise is resolved with either `true` or `false`.
*
* The algorithms currently supported include:
*
* - `'RSASSA-PKCS1-v1_5'`
* - `'RSA-PSS'`
* - `'ECDSA'`
* - `'Ed25519'`
* - `'Ed448'`
* - `'HMAC'`
* @since v15.0.0
*/
verify(algorithm: AlgorithmIdentifier | RsaPssParams | EcdsaParams | Ed448Params, key: CryptoKey, signature: BufferSource, data: BufferSource): Promise<boolean>;
/**
* In cryptography, "wrapping a key" refers to exporting and then encrypting the keying material.
* The `subtle.wrapKey()` method exports the keying material into the format identified by `format`,
* then encrypts it using the method and parameters specified by `wrapAlgo` and the keying material provided by `wrappingKey`.
* It is the equivalent to calling `subtle.exportKey()` using `format` and `key` as the arguments,
* then passing the result to the `subtle.encrypt()` method using `wrappingKey` and `wrapAlgo` as inputs.
* If successful, the returned promise will be resolved with an `<ArrayBuffer>` containing the encrypted key data.
*
* The wrapping algorithms currently supported include:
*
* - `'RSA-OAEP'`
* - `'AES-CTR'`
* - `'AES-CBC'`
* - `'AES-GCM'`
* - `'AES-KW'`
* @param format Must be one of `'raw'`, `'pkcs8'`, `'spki'`, or `'jwk'`.
* @since v15.0.0
*/
wrapKey(format: KeyFormat, key: CryptoKey, wrappingKey: CryptoKey, wrapAlgorithm: AlgorithmIdentifier | RsaOaepParams | AesCtrParams | AesCbcParams | AesGcmParams): Promise<ArrayBuffer>;
}
}
}
declare module 'node:crypto' {
export * from 'crypto';
}